文章目录
0. 动态电路分析综述
有动态元件的电路叫做动态电路。我们所关注的的动态电路分析,主要集中于一个动作(换路)、两个过程(暂态和稳态)。
当电路结构或元件参数发生改变时(例如电路中某条支路的断开或者接入,信号的突然注入等),会使电路原来的工作状态发生改变,成为一个新的工作状态,这种转变叫做换路。而这种转变是需要时间的,转变过程即为暂态过程。
当变化经过一段时间后(这个时间是由系统本身决定的),各元件的参量都不改变或周期性改变,则称进入了稳定状态,简称稳态。
本节的时域分析主要讨论暂态过程。稳态过程可以使用更加有效的相量法进行求解。
1. 微分方程描述
利用微分方程描述动态电路,就是把握住电容电感的元件约束,随后利用进行相互关联。
微分方程法是电路时域分析的核心与经典分析方法。
比如RLC串联电路可以建立如下简明的方程:
i
R
+
L
d
i
d
t
+
1
C
∫
−
∞
t
i
d
t
=
0
iR+L\frac{\mathrm di}{\mathrm dt}+\frac{1}{C}\int_{-\infty}^ti\,\mathrm dt=0
iR+Ldtdi+C1∫−∞tidt=0
2. 动态元件的补充
动态元件主要指电容和电感。均由一阶导数定义控制关系。
2.1. 电容电感的串并联
电容和电导、电感和电阻的规则分别相似。
电感串加并倒,电容串倒并加。
2.2. 动态电路阶数的判断
由于独立源在微分方程中的实际意义是等号右边的函数,所以将独立源置零之后,相当于分析一个齐次微分方程,并不会影响电路的阶数,但分析阶数确实更加方便了。
若串/并联的电容电感可以合并,则合并,观察简化后的电路中动态元件的个数,即为电路阶数。
2.3. 电容电感的元件等效
在分析电路初态时,可以把电容电感的过去等效为一个确定的电压源或电流源+零状态的电容电感,这会为我们的分析指出另一个侧面:
v
(
t
)
=
1
C
∫
−
∞
t
i
(
t
)
d
t
=
V
0
+
1
C
∫
t
0
t
i
(
t
)
d
t
i
(
t
)
=
1
L
∫
−
∞
t
v
(
t
)
d
t
=
I
0
+
1
L
∫
t
0
t
v
(
t
)
d
t
v(t)=\frac{1}{C}\int_{-\infty}^ti(t)\,\mathrm dt = V_0+\frac{1}{C}\int_{t_0}^ti(t)\,\mathrm dt\\ i(t)=\frac{1}{L}\int_{-\infty}^tv(t)\,\mathrm dt=I_0+\frac{1}{L}\int_{t_0}^tv(t)\,\mathrm dt
v(t)=C1∫−∞ti(t)dt=V0+C1∫t0ti(t)dti(t)=L1∫−∞tv(t)dt=I0+L1∫t0tv(t)dt
例如,对如下的电路图:
有
由于这种等效,其中出现了一个0~t的积分。所以也可以为0,从而简化得到如下的式子:
3. 直观方法:三要素法与收敛性
3.1. 三要素法
利用微分方程理解一个电路是很不直观的,同时求解也不是human-friendly的。
所以有以下三个从微分方程中提取出来的要素,可以定性描绘一个一阶线性动态电路:
- 初态值:定义暂态过程的起点
- 稳态值:定义暂态过程的终点,计算时取 t → ∞ t\to\infty t→∞即可。
- 时间常数:由网络本身特性决定。也可以使用固有频率 s = − 1 τ \displaystyle s=-\frac{1}{\tau} s=−τ1对这个特性进行表征。
3.2. 二阶电路的定性分析
二阶电路没有简明的三要素法可供使用。
但除了朴素的微分方程之外,仍然可以从特征根看出网络的部分特性。
对于RLC串联电路,我们可以解出如下的特征根:
p
1
,
2
=
−
R
2
L
±
(
R
2
L
)
2
−
1
L
C
p_{\tiny 1, 2}=-\frac{R}{2L}\pm\sqrt{\left(\frac{R}{2L}\right)^2-\frac{1}{LC}}
p1,2=−2LR±(2LR)2−LC1
关于为什么过阻尼衰减的比临界阻尼更慢,考虑其中两个特征根其一大于临界阻尼对应特征根
令
α
d
=
R
2
L
\alpha_d=\frac{R}{2L}
αd=2LR
为衰减系数,表征电路振荡过程的振幅衰减快慢。
ω
d
=
1
L
C
−
(
R
2
L
)
2
\omega_d=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^2}
ωd=LC1−(2LR)2
为振荡角频率,表征欠阻尼条件下振荡的快慢。
由这两个量,或者特征根在平面上的分布,定性地画出二阶动态电路的响应曲线。
此为直观方法。