电路课组(一)电路原理 Part 4 动态电路(1) 动态时域分析

本文概述了动态电路分析,涉及微分方程描述RLC电路、电容电感的串并联原则、阶数判断技巧,以及三要素法与二阶电路定性分析。通过实例演示了如何直观理解和解决动态电路问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 动态电路分析综述

有动态元件的电路叫做动态电路。我们所关注的的动态电路分析,主要集中于一个动作(换路)、两个过程(暂态和稳态)。

 当电路结构或元件参数发生改变时(例如电路中某条支路的断开或者接入,信号的突然注入等),会使电路原来的工作状态发生改变,成为一个新的工作状态,这种转变叫做换路。而这种转变是需要时间的,转变过程即为暂态过程。
 当变化经过一段时间后(这个时间是由系统本身决定的),各元件的参量都不改变或周期性改变,则称进入了稳定状态,简称稳态

本节的时域分析主要讨论暂态过程。稳态过程可以使用更加有效的相量法进行求解。

1. 微分方程描述

利用微分方程描述动态电路,就是把握住电容电感的元件约束,随后利用进行相互关联。
微分方程法是电路时域分析的核心与经典分析方法。

比如RLC串联电路可以建立如下简明的方程:
i R + L d i d t + 1 C ∫ − ∞ t i   d t = 0 iR+L\frac{\mathrm di}{\mathrm dt}+\frac{1}{C}\int_{-\infty}^ti\,\mathrm dt=0 iR+Ldtdi+C1tidt=0

2. 动态元件的补充

动态元件主要指电容和电感。均由一阶导数定义控制关系。

2.1. 电容电感的串并联

电容和电导、电感和电阻的规则分别相似。

电感串加并倒,电容串倒并加。

2.2. 动态电路阶数的判断

由于独立源在微分方程中的实际意义是等号右边的函数,所以将独立源置零之后,相当于分析一个齐次微分方程,并不会影响电路的阶数,但分析阶数确实更加方便了。

若串/并联的电容电感可以合并,则合并,观察简化后的电路中动态元件的个数,即为电路阶数。

2.3. 电容电感的元件等效

在分析电路初态时,可以把电容电感的过去等效为一个确定的电压源或电流源+零状态的电容电感,这会为我们的分析指出另一个侧面:
v ( t ) = 1 C ∫ − ∞ t i ( t )   d t = V 0 + 1 C ∫ t 0 t i ( t )   d t i ( t ) = 1 L ∫ − ∞ t v ( t )   d t = I 0 + 1 L ∫ t 0 t v ( t )   d t v(t)=\frac{1}{C}\int_{-\infty}^ti(t)\,\mathrm dt = V_0+\frac{1}{C}\int_{t_0}^ti(t)\,\mathrm dt\\ i(t)=\frac{1}{L}\int_{-\infty}^tv(t)\,\mathrm dt=I_0+\frac{1}{L}\int_{t_0}^tv(t)\,\mathrm dt v(t)=C1ti(t)dt=V0+C1t0ti(t)dti(t)=L1tv(t)dt=I0+L1t0tv(t)dt

例如,对如下的电路图:


在这里插入图片描述
由于这种等效,其中出现了一个0~t的积分。所以也可以为0,从而简化得到如下的式子:
在这里插入图片描述

3. 直观方法:三要素法与收敛性

3.1. 三要素法

利用微分方程理解一个电路是很不直观的,同时求解也不是human-friendly的。

所以有以下三个从微分方程中提取出来的要素,可以定性描绘一个一阶线性动态电路:

  • 初态值:定义暂态过程的起点
  • 稳态值:定义暂态过程的终点,计算时取 t → ∞ t\to\infty t即可。
  • 时间常数:由网络本身特性决定。也可以使用固有频率 s = − 1 τ \displaystyle s=-\frac{1}{\tau} s=τ1对这个特性进行表征。

3.2. 二阶电路的定性分析

二阶电路没有简明的三要素法可供使用。

但除了朴素的微分方程之外,仍然可以从特征根看出网络的部分特性。

对于RLC串联电路,我们可以解出如下的特征根:
p 1 , 2 = − R 2 L ± ( R 2 L ) 2 − 1 L C p_{\tiny 1, 2}=-\frac{R}{2L}\pm\sqrt{\left(\frac{R}{2L}\right)^2-\frac{1}{LC}} p1,2=2LR±(2LR)2LC1
在这里插入图片描述

关于为什么过阻尼衰减的比临界阻尼更慢,考虑其中两个特征根其一大于临界阻尼对应特征根


α d = R 2 L \alpha_d=\frac{R}{2L} αd=2LR
为衰减系数,表征电路振荡过程的振幅衰减快慢。
ω d = 1 L C − ( R 2 L ) 2 \omega_d=\sqrt{\frac{1}{LC}-\left(\frac{R}{2L}\right)^2} ωd=LC1(2LR)2
为振荡角频率,表征欠阻尼条件下振荡的快慢。

由这两个量,或者特征根在平面上的分布,定性地画出二阶动态电路的响应曲线。
此为直观方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值