电路第三章-动态电路

电路第三章-动态电路

第三章动态电路

三.1动态元件

VCR(VAR)为微分或者积分的元件为动态原件

含有动态元件的电路称为动态电路

电容

定义: f ( u , q ) = 0 f(u,q)=0 f(u,q)=0

1.二端元件

2.任意时刻t,其电荷 q ( t ) q(t) q(t)和电压 u ( t ) u(t) u(t)的关系都能表示为:
f ( u , q ) = 0 f(u,q)=0 f(u,q)=0

分类:

时变,时不变,线性,非线性

线性时不变电容的特性:
库伏特性 q ( t ) = C u ( t ) q(t)=Cu(t) q(t)=Cu(t)

C为电容值,单位法拉F,线性时不变的电容C为常数

VAR微分形式 i ( t ) = C   d u   d t i(t)=C\frac{\,du}{\,dt} i(t)=Cdtdu

{ i =   d q   d t q = C u ( t ) \begin{cases} i=\frac{\,dq}{\,dt}\\ q=Cu(t) \end{cases} {i=dtdqq=Cu(t)

联立得到
i ( t ) = C   d u   d t i(t)=C\frac{\,du}{\,dt} i(t)=Cdtdu

正比关系

正比任意时刻电流与电压变化率成正比

电压连续

i有限则电压变化律有限,则u为连续函数(变化率有限即可导,可导一定连续),不会突变

阻隔直流

i=0直流电时电容在瞬间完成充电,之后相当于开路,有阻隔直流的作用

VAR积分形式 u ( t ) = 1 C ∫ − ∞ t i ( ξ )   d ξ u(t)=\frac{1}{C}\int_{-\infin}^ti(\xi)\,d\xi u(t)=C1ti(ξ)dξ

t = t 0 t=t_0 t=t0为观察时刻,则上式改写为:
u ( t ) = 1 C ∫ − ∞ t i ( ξ )   d ξ = 1 C ∫ − ∞ t 0 i ( ξ )   d ξ + 1 C ∫ − t 0 t i ( ξ )   d ξ = u ( t 0 ) + 1 C ∫ − t 0 t i ( ξ )   d ξ \begin{aligned} u(t)&=\frac{1}{C}\int_{-\infin}^ti(\xi)\,d\xi\\&=\frac{1}{C}\int_{-\infin}^{t_0}i(\xi)\,d\xi+\frac{1}{C}\int_{-t_0}^ti(\xi)\,d\xi\\ &=u(t_0)+\frac{1}{C}\int_{-t_0}^ti(\xi)\,d\xi \end{aligned} u(t)=C1ti(ξ)dξ=C1t0i(ξ)dξ+C1t0ti(ξ)dξ=u(t0)+C1t0ti(ξ)dξ
其中 u ( t 0 ) u(t_0) u(t0)初始值

记忆电流

任意时刻容器电压u记忆了此前所有的电流作用

功率 p ( t ) = C u ( t )   d u ( t )   d t p(t)=Cu(t)\frac{\,du(t)}{\,dt} p(t)=Cu(t)dtdu(t)

p ( t ) = u ( t ) i ( t ) = C u ( t )   d u ( t )   d t \begin{aligned} p(t)=u(t)i(t)=Cu(t)\frac{\,du(t)}{\,dt} \end{aligned} p(t)=u(t)i(t)=Cu(t)dtdu(t)

p ( t ) > 0 p(t)>0 p(t)>0则电容吸收能量,是充电状态

电容不能消耗能量,也不能产生能量,只能存储能量

储能 W c ( t ) = 1 2 C u 2 ( t ) W_c(t)=\frac{1}{2}Cu^2(t) Wc(t)=21Cu2(t)

由功率方程从 − ∞ -\infin 积分到t时刻即可得到t时刻能量
W c ( t ) = ∫ − ∞ t p ( ξ )   d ξ = ∫ u ( − ∞ ) u ( t ) C u ( ξ )   d ξ = 1 2 C u 2 ∣ − ∞ t = 1 2 C u 2 ( t ) − 1 2 C u 2 ( − ∞ ) \begin{aligned} W_c(t)&=\int_{-\infin}^tp(\xi)\,d\xi\\ &=\int_{u(-\infin)}^{u(t)}Cu(\xi)\,d\xi\\ &=\frac{1}{2}Cu^2|_{-\infin}^t\\ &=\frac{1}{2}Cu^2(t)-\frac{1}{2}Cu^2(-\infin) \end{aligned} Wc(t)=tp(ξ)dξ=u()u(t)Cu(ξ)dξ=21Cu2t=21Cu2(t)21Cu2()
u ( − ∞ ) = 0 u(-\infin)=0 u()=0 W c ( t ) = 1 2 C u 2 ( t ) W_c(t)=\frac{1}{2}Cu^2(t) Wc(t)=21Cu2(t)

电容在某一时刻的储能只取决于此时刻的电压,与电流无关

电感

定义
磁通 Φ ( t ) \Phi(t) Φ(t)

设在磁感应强度B匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个平面的磁通量,简称磁通(Magnetic Flux)。标量,符号“ Φ Φ Φ”。

磁链 Ψ ( t ) \Psi(t) Ψ(t)

N匝线圈的总磁通, Ψ ( t ) = N Φ ( t ) \Psi(t)=N\Phi(t) Ψ(t)=NΦ(t)

电感:

1.二端元件

2.任意时刻,磁链 Ψ ( t ) \Psi(t) Ψ(t)与电流 i ( t ) i(t) i(t)满足 f ( Ψ , i ) = 0 f(\Psi,i)=0 f(Ψ,i)=0关系

分类:时变,时不变,线性,非线性

线性时不变电感的特性:
韦安特性 Ψ ( t ) = L ⋅ i ( t ) \Psi(t)=L·i(t) Ψ(t)=Li(t)

其中

L为电感,单位:亨利H,线性时不变电感的L为常数

Ψ \Psi Ψ为磁链,单位:韦伯Wb

VAR微分形式 u ( t ) = L   d i   d t u(t)=L\frac{\,di}{\,dt} u(t)=Ldtdi

由法拉第电磁感应定律有:
u ( t ) = d Ψ ( t ) d t u(t)=\frac{d\Psi(t)}{dt} u(t)=dtdΨ(t)
由线性电感韦安特性有:
Ψ ( t ) = L i ( t ) \Psi(t)=Li(t) Ψ(t)=Li(t)
联立得到:
u ( t ) = L   d i   d t u(t)=L\frac{\,di}{\,dt} u(t)=Ldtdi

正比关系:

任意时刻电压与电流变化率成正比

电流连续

电压为有限值,由电流变化率与电压成正比,因此电流变化律也是有限值,可导一定连续

阻隔交流

交流电方向不断变化,感抗会阻碍交流电通过,但是对于直流电,感抗瞬间充电完成后相当于短路

VAR积分形式 i ( t ) = 1 L ∫ − ∞ t u ( ξ )   d ξ i(t)=\frac{1}{L}\int_{-\infin}^tu(\xi)\,d\xi i(t)=L1tu(ξ)dξ
功率 p ( t ) = L   d i ( t )   d t i ( t ) p(t)=L\frac{\,di(t)}{\,dt}i(t) p(t)=Ldtdi(t)i(t)

p ( t ) = u ( t ) i ( t ) = L d i ( t ) d t i ( t ) \begin{aligned} p(t)=u(t)i(t)=L\frac{di(t)}{dt}i(t) \end{aligned} p(t)=u(t)i(t)=Ldtdi(t)i(t)

p ( t ) > 0 p(t)>0 p(t)>0则电感吸收能量

记忆电压

任意时刻t的电流是所有历史上电压累计的结果

储能 W L ( t ) = 1 2 L i 2 ( t ) W_L(t)=\frac{1}{2}Li^2(t) WL(t)=21Li2(t)

对功率从 t = − ∞ t=-\infin t=积分到 t t t时刻即可得到储能
W L ( t ) = ∫ − ∞ t p ( x )   d x = ∫ i − ∞ i ( t ) L i ( x )   d i ( x ) = 1 2 L ( i 2 ( t ) − i 2 ( − ∞ ) ) = 1 2 L i 2 ( t ) \begin{aligned} W_L(t)&=\int_{-\infin}^tp(x)\,dx\\ &=\int_{i_{-\infin}}^{i(t)}Li(x)\,di(x)\\ &=\frac{1}{2}L(i^2(t)-i^2(-\infin))\\ &=\frac{1}{2}Li^2(t) \end{aligned} WL(t)=tp(x)dx=ii(t)Li(x)di(x)=21L(i2(t)i2())=21Li2(t)

电容和电感的比较

在这里插入图片描述

三.2动态电路方程及其解

列写动态方程

依据:VAR,KCL,KVL

电路的阶:描述电路的微分方程的阶就是电路的阶

一阶电路

对于一阶线性微分方程:
d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x)\\ dxdy+P(x)y=Q(x)
其通解为:
y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x + C ) y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}+C) y=eP(x)dx(Q(x)eP(x)dx+C)

RC串联电路

t = 0 t=0 t=0时开关闭合:

对电容列写VAR微分方程:
i = C d u c d t i=C\frac{du_c}{dt} i=Cdtduc
对电阻由欧姆定律:
i = u R R i=\frac{u_R}{R} i=RuR
由KVL定律:
u s = u R + u c u_s=u_R+u_c us=uR+uc
联立得:
u s = R C d u c d t + u c 即 d u c d t + 1 R C u c = u s R C u_s=RC\frac{du_c}{dt}+u_c\\ 即\frac{du_c}{dt}+\frac{1}{RC}u_c=\frac{u_s}{RC} us=RCdtduc+ucdtduc+RC1uc=RCus

τ = R C \tau=RC τ=RC为时常数,单位s

解一阶线性微分方程:
u c = e − ∫ 1 R C d t ( ∫ u s R C e ∫ 1 R C d t d t + K ) = e − t R C ( ∫ u s R C e t R C d t + K ) = e − t R C ( u s R C R C e t R C + K ) = u s + K e − t R C \begin{aligned} u_c&=e^{-\int\frac{1}{RC}dt}(\int \frac{u_s}{RC}e^{\int\frac{1}{RC}dt}dt+K)\\ &=e^{-\frac{t}{RC}}(\int \frac{u_s}{RC}e^{\frac{t}{RC}}dt+K)\\ &=e^{-\frac{t}{RC}}(\frac{u_s}{RC}RCe^{\frac{t}{RC}}+K)\\ &=u_s+Ke^{-\frac{t}{RC}} \end{aligned} uc=eRC1dt(RCuseRC1dtdt+K)=eRCt(RCuseRCtdt+K)=eRCt(RCusRCeRCt+K)=us+KeRCt

u c ( 0 ) = U 0 u_c(0)=U_0 uc(0)=U0带入方程解得初始值:
K = U 0 − u s K=U_0-u_s K=U0us
故一阶线性微分方程解为:
u c ( t ) = u s + ( U 0 − u s ) e − t R C , t ≥ 0 u_c(t)=u_s+(U_0-u_s)e^{-\frac{t}{RC}},t≥0 uc(t)=us+(U0us)eRCt,t0
又称为完全响应
完 全 响 应 = 固 有 相 应 + 强 迫 响 应 完全响应=固有相应+强迫响应 =+

固有响应:

固有响应(暂态响应): ( U 0 − u s ) e − t R C (U_0-u_s)e^{-\frac{t}{RC}} (U0us)eRCt
lim ⁡ t → ∞ ( U 0 − u s ) e − t R C = 0 \lim _{t\rightarrow \infin}(U_0-u_s)e^{-\frac{t}{RC}}=0 tlim(U0us)eRCt=0
即该项的响应只是暂时的,随着时间推移,其响应越来越弱,因而称为暂态响应

固有相应为一阶线性方程的齐次解,其函数形式由特征根决定,只与电路的结构和元件参数有关,与激励 u s u_s us无关,因而称为固有响应

强迫响应

强迫响应(稳定响应): u s u_s us

强迫响应与激励 u s u_s us相同,因而称为强迫响应

u s u_s us响应不随时间变化因而称为稳态响应

RL并联电路

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J8tHAXwp-1632619631568)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210925205124585.png)]

对电感列写VAR微分方程
u L = L d i d t u_L=L\frac{di}{dt} uL=Ldtdi
对电阻由欧姆定律:
i R = u R R i_R=\frac{u_R}{R} iR=RuR
由KCL方程:
i s = i R + i L i_s=i_R+i_L is=iR+iL
u R = u L u_R=u_L uR=uL

联立得到:
i s = L R d i L d t + i L 即 d i L d t + R L i L = R L i s i_s=\frac{L}{R}\frac{di_L}{dt}+i_L\\ 即 \frac{di_{L}}{dt}+\frac{R}{L}i_L=\frac{R}{L}i_s is=RLdtdiL+iLdtdiL+LRiL=LRis

二阶电路

二阶线性微分方程的解:

对于二阶线性微分方程:
y ′ ′ + P ( x ) y ′ + Q ( x ) y = R ( x ) y''+P(x)y'+Q(x)y=R(x) y+P(x)y+Q(x)y=R(x)

由KVL定律:
u s = u R + u L + u C u_s=u_R+u_L+u_C us=uR+uL+uC
由各元件VAR特性:
{ i = C d u C d t u R = i R = R C d u C d t u L = L d i d t = L d ( C d u C d t ) d t = L C d 2 u C d t 2 \begin{cases} i=C\frac{du_C}{dt}\\ u_R=iR=RC\frac{du_C}{dt}\\ u_L=L\frac{di}{dt}=L\frac{d(C\frac{du_C}{dt})}{dt}=LC\frac{d^2u_C}{dt^2} \end{cases} i=CdtduCuR=iR=RCdtduCuL=Ldtdi=Ldtd(CdtduC)=LCdt2d2uC
联立得:
u s = R C d u C d t + L C d 2 u C d t 2 + u C 即 d 2 u C d t + R L d u c d t + 1 L C u C = u s L C u_s=RC\frac{du_C}{dt}+LC\frac{d^2u_C}{dt^2}+u_C\\ 即 \frac{d^2u_C}{dt}+\frac{R}{L}\frac{du_c}{dt}+\frac{1}{LC}u_C=\frac{u_s}{LC} us=RCdtduC+LCdt2d2uC+uCdtd2uC+LRdtduc+LC1uC=LCus

三.3电路的初始值

初始值概念与定义:

初 始 值 { 独 立 初 始 值 { 电 容 电 压 初 值 u C ( 0 ) 电 感 电 流 初 值 i L ( 0 ) 非 独 立 立 初 始 值 初始值 \begin{cases} 独立初始值 \begin{cases} 电容电压初值u_C(0)\\ 电感电流初值i_L(0)\\ \end{cases} \\ 非独立立初始值 \end{cases} {uC(0)iL(0)

换路定律

换 路 { 开 关 开 闭 动 作 元 件 参 数 突 变 电 源 数 值 突 变 换路 \begin{cases} 开关开闭动作\\ 元件参数突变\\ 电源数值突变 \end{cases}

一般认为电路初始时刻是换路时刻(通常是闭合或者断开开关)

换路定律:

换路前后电感上的电流和电容上的电压不会发生突变

独立初始值的求解

根据换路定律,换路瞬间的独立初始值不变,换路前认为时间无限长,各元件已经达到稳定状态

稳定状态:

电感短路

电容开路

非独立初始值求解

1.求出独立初始值

2.根据置换定理,在 t = 0 + t=0^+ t=0+时刻:

将电容用电压源 u C ( 0 + ) u_C(0+) uC(0+)代替,如果 u C ( 0 + ) = 0 u_C(0+)=0 uC(0+)=0则短路代替.注意电压极性不变

将电感用电流源 i L ( 0 + ) i_L(0+) iL(0+)代替,如果 i L ( 0 + ) = 0 i_L(0+)=0 iL(0+)=0则开路代替.注意电流方向不变

独立电源取 t = 0 + t=0+ t=0+的值

得到直流电源作用下的电阻电路:0+等效电路

此时求的各电流电压就是非独立初始值

初始值计算举例:

在这里插入图片描述

t < 0 t<0 t<0

稳态时电容开路,电感短路:

计算可得到:

u c = 12 V u_c=12V uc=12V

i L = 4 A i_L=4A iL=4A

t = 0 t=0 t=0

将电容用一 u c = 12 V u_c=12V uc=12V的电压源置换

将电感用一 i L = 4 A i_L=4A iL=4A的电流源置换

i R = 12 V 4 Ω = 3 A i_R=\frac{12V}{4\Omega}=3A iR=4Ω12V=3A

i c = − i R − 4 A = − 7 A i_c=-i_R-4A=-7A ic=iR4A=7A

u L = 12 V − 3 Ω × 4 A = 0 V u_L=12V-3\Omega\times4A=0V uL=12V3Ω×4A=0V

电容电压和电感电流发生强迫越变的情况

三.4一阶动态电路的响应

零输入响应

外加激励均为0,仅有初始状态引起的响应,记为 y z i ( t ) y_{zi}(t) yzi(t)

S → 1 S\rightarrow 1 S1
u C = R 2 R 1 + R 2 U S u_C=\frac{R_2}{R_1+R_2}U_S uC=R1+R2R2US
充电状态下电流是从电容器正极板流入,从负极板流出的,因此电流和电压是关联的

S → 2 S\rightarrow 2 S2

由KVL定理有:
u C = u R u_C=u_R uC=uR
对电阻由欧姆定律
i = u R R i=\frac{u_R}{R} i=RuR

对电容由VAR微分方程
i C ( t ) = − C d u c ( t ) d t i_C(t)=-C\frac{du_c(t)}{dt} iC(t)=Cdtduc(t)
其中等式右侧取符号是因为此时电容器放电,电流从电容器正极板流出,流入负极板,电流与电压非关联

联立得到:
d u C d t + 1 C R u C = 0 \frac{du_C}{dt}+\frac{1}{CR}u_C=0 dtduC+CR1uC=0

令时间常数 τ = R C \tau=RC τ=RC则有 d u C d t + 1 τ u C = 0 \frac{du_C}{dt}+\frac{1}{\tau}u_C=0 dtduC+τ1uC=0

解得
u C ( t ) = K e − t τ u_C(t)=Ke^{-\frac{t}{\tau}} uC(t)=Keτt
u C ( 0 ) = K = R 2 R 1 + R 2 u s u_C(0)=K=\frac{R_2}{R_1+R_2}u_s uC(0)=K=R1+R2R2us


u c ( t ) = R 2 R 1 + R 2 u s e − t τ u_c(t)=\frac{R_2}{R_1+R_2}u_se^{-\frac{t}{\tau}} uc(t)=R1+R2R2useτt

lim ⁡ t → ∞ u c ( t ) = 0 \lim_{t\rightarrow \infin}u_c(t)=0 tlimuc(t)=0

故电容器独立放电的过程是一个暂态过程

暂态过程的快慢与时间常数 τ \tau τ有关,与激励和初始状态无关:

τ \tau τ越大,暂态变化越慢

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WBAUpVM0-1632619631576)(https://i.bmp.ovh/imgs/2021/09/a6c21c4139f3862f.png)]

零状态响应

电路初始储能为0(初始状态为0),仅由外加激励所引起的响应,记作 y z s ( t ) y_{zs}(t) yzs(t)

全响应

电路在外加激励和初始状态共同作用下产生的响应,记作 y ( t ) y(t) y(t)
全 相 应 = 零 输 入 响 应 + 零 状 态 响 应 y ( t ) = y z i ( t ) + y z s ( t ) 全相应=零输入响应+零状态响应\\ y(t)=y_{zi}(t)+y_{zs}(t) =+y(t)=yzi(t)+yzs(t)

三.5一阶电路的三要素法 y ( t ) = [ y ( 0 + ) − y p ( 0 + ) ] e − t τ + y p ( t ) y(t)=[y(0+)-y_p(0+)]e^{-\frac{t}{\tau}}+y_p(t) y(t)=[y(0+)yp(0+)]eτt+yp(t)

直流电源激励下一阶电路响应的简便计算方法:三要素法
A + K e − λ t A +Ke^{-\lambda t} A+Keλt

三要素法的推导:

1.由于一阶电路只含有一共动态元件,由戴维南定理,一阶电路都可以简化为

独立源,电阻,电容串联的形式

由KVL方程:
u S = u R + u C u_S=u_R+u _C uS=uR+uC
由欧姆定律:
u R = i R u_R=iR uR=iR
对电容由VAR微分方程:
i = C d u C d t i=C\frac{du_C}{dt} i=CdtduC
联立三式得到:
d u C d t + 1 R C u C = u S R C \frac{du_C}{dt}+\frac{1}{RC}u_C=\frac{u_S}{RC} dtduC+RC1uC=RCuS
y ( t ) y(t) y(t)表示响应 u C u_C uC, f ( t ) f(t) f(t)表示外加激励 u S u_S uS,则方程可以写作:
d y ( t ) d t + 1 τ y ( t ) = b f ( t ) \frac{dy(t)}{dt}+\frac{1}{\tau}y(t)=bf(t) dtdy(t)+τ1y(t)=bf(t)
其中b为非零常数
y ( t ) = y h ( t ) + y p ( t ) 一 阶 线 性 齐 次 方 程 的 解 = 齐 次 解 ( 同 解 ) + 特 解 y(t)=y_h(t)+y_p(t)\\ 一阶线性齐次方程的解=齐次解(同解)+特解 y(t)=yh(t)+yp(t)线=()+

解一阶线性微分方程得到:
y ( t ) = e − ∫ 1 τ   d x ( ∫ b f ( t ) e ∫ 1 τ   d t + K ) y ( t ) = K e − t τ + b τ e − t τ ∫ f ( t ) e t τ y(t)=e^{-\int \frac{1}{\tau}\,dx}(\int bf(t)e^{\int \frac{1}{\tau}\,dt}+K)\\ y(t)=Ke^{-\frac{t}{\tau}}+b\tau e^{- \frac{t}{\tau}}\int f(t)e^\frac{t}{\tau} y(t)=eτ1dx(bf(t)eτ1dt+K)y(t)=Keτt+bτeτtf(t)eτt

y ( t ) = K e − t τ + y p ( t ) y(t)=Ke^{-\frac{t}{\tau}}+y_p(t) y(t)=Keτt+yp(t)
将初始值 y ( 0 + ) y(0+) y(0+)带入上式求的K值
y ( 0 + ) = [ y ( 0 + ) − y p ( 0 + ) ] y(0+)=[y(0+)-y_p(0+)] y(0+)=[y(0+)yp(0+)]
回代得到:
y ( t ) = [ y ( 0 + ) − y p ( 0 + ) ] e − t τ + y p ( t ) y(t)=[y(0+)-y_p(0+)]e^{-\frac{t}{\tau}}+y_p(t) y(t)=[y(0+)yp(0+)]eτt+yp(t)

对于一阶电路,只需要求得 y ( 0 + ) y(0+) y(0+),时常数 τ \tau τ,微分方程特解 y p ( t ) y_p(t) yp(t)就可以求出 y ( t ) y(t) y(t)

直流激励时一阶电路的响应 y ( t ) = y ( 0 + ) e − t τ + y ( ∞ ) ( 1 − e t τ ) y(t)=y(0+)e^{-\frac{t}{\tau}}+y(\infin)(1-e^{\frac{t}{\tau}}) y(t)=y(0+)eτt+y()(1eτt)

直流激励下 y p ( t ) = A y_p(t)=A yp(t)=A为一常数

带入三要素公式有:
y ( t ) = K e − t τ + A y(t)=Ke^{-\frac{t}{\tau}}+A y(t)=Keτt+A
带入初始值 y ( 0 + ) y(0+) y(0+)
y ( 0 + ) = K e − 0 τ + A y(0+)=Ke^{-\frac{0}{\tau}}+A y(0+)=Keτ0+A
解得
K = y ( 0 + ) − A K=y(0+)-A K=y(0+)A
其中 A = y ( ∞ ) A=y(\infin) A=y()为稳态值

回代得到:
y ( t ) = y ( 0 + ) e − t τ + y ( ∞ ) ( 1 − e t τ ) y(t)=y(0+)e^{-\frac{t}{\tau}}+y(\infin)(1-e^{\frac{t}{\tau}}) y(t)=y(0+)eτt+y()(1eτt)

注意事项:
1.适用范围

直流激励下一阶电路中任意处的电流和电压

2.三要素: y ( 0 + ) , y ( ∞ ) , τ y(0+),y(\infin),\tau y(0+),y(),τ
3.当 τ < 0 \tau<0 τ<0

此时电路不稳定,但是公式仍然适用, y ( ∞ ) y(\infin) y()的含义为平衡状态值,不是稳态值

4. t = t 0 t=t_0 t=t0为初始时刻时的三要素公式:

y ( t ) = [ y ( 0 + ) − y ( ∞ ) ] e − t − t 0 τ + y ( ∞ ) y(t)=[y(0+)-y(\infin)]e^{-\frac{t-t_0}{\tau}}+y(\infin) y(t)=[y(0+)y()]eτtt0+y()

三要素的计算方法
要素计算方法
初始值 y ( 0 + ) y(0+) y(0+)1.计算环路前电容电压值和电感电流值
2.换路定律后画 0 + 0+ 0+等效电路求解环路后各参数
稳态值 y ( ∞ ) y(\infin) y()1.换路后无限长时间后,电容开路,电感短路,画出稳态等效电阻电路
2.求解稳态值
时常数 τ \tau τ R 0 R_0 R0为换路后用戴维南定理求得的等效电阻
τ = { R 0 C , 一 阶 R C 电 路 L R 0 , 一 阶 R L 电 路 \tau=\begin{cases}R_0C,一阶RC电路\\\frac{L}{R_0},一阶RL电路\end{cases} τ={R0C,RCR0L,RL

在这里插入图片描述

1.先求换路前的电感电流:

稳态时电感视为短路,电流 i 0 − = U s R 1 = 6 A i_{0-}=\frac{U_s}{R_1}=6A i0=R1Us=6A

S闭合后

2.求 0 + 0+ 0+

由换路定律有:
i L = i 0 − = 6 A i_L=i_{0-}=6A iL=i0=6A

画出 0 + 0+ 0+等效电路:

列写结点电压方程:
{ 1 : u 1 = 18 V 2 : ( 1 R 1 + 1 R 2 ) u 2 − 1 R 1 u 1 = I s − i L \begin{cases} 1:u_1=18V\\ 2:(\frac{1}{R_1}+\frac{1}{R_2})u_2-\frac{1}{R_1}u_1=I_s-i_L \end{cases} {1:u1=18V2:(R11+R21)u2R11u1=IsiL
解得
{ u 1 = 18 V u 2 = 6 V \begin{cases} u_1=18V\\ u_2=6V \end{cases} {u1=18Vu2=6V

u L ( 0 + ) = u 2 = 6 V u_L(0+)=u_2=6V\\ uL(0+)=u2=6V

3.求 ∞ \infin

画出 ∞ \infin 电路


i L ( ∞ ) = 18 V 3 Ω + 3 A = 9 A i_L(\infin)=\frac{18V}{3\Omega}+3A=9A iL()=3Ω18V+3A=9A

u L ( ∞ ) = 0 i ( ∞ ) = 0 u_L(\infin)=0\\ i(\infin)=0 uL()=0i()=0

4.求时间常数 τ \tau τ

由戴维南定理(电压源短路,电流源开路),画出基于电感的纯电阻电路

image-20210926090954673
R 0 = 3 ∗ 6 3 + 6 = 2 Ω τ = L R 0 = 2 2 = 1 s R_0=\frac{3*6}{3+6}=2\Omega\\ \tau=\frac{L}{R_0}=\frac{2}{2}=1s R0=3+636=2Ωτ=R0L=22=1s
5.带入三要素方程 y ( t ) = [ y ( 0 + ) − y ( ∞ ) ] e − t τ + y ( ∞ ) y(t)=[y(0+)-y(\infin)]e^{-\frac{t}{\tau}}+y(\infin) y(t)=[y(0+)y()]eτt+y()

要素
初始值 y ( 0 + ) y(0+) y(0+) { u L ( 0 + ) = 6 V i L ( 0 + ) = 6 A \begin{cases}u_L(0+)=6V\\i_L(0+)=6A\end{cases} {uL(0+)=6ViL(0+)=6A
稳态值 y ( ∞ ) y(\infin) y() { i L ( ∞ ) = 9 A u L ( ∞ ) = 0 \begin{cases}i_L(\infin)=9A\\u_L(\infin)=0\\\end{cases} {iL()=9AuL()=0
时常数 τ \tau τ τ = 1 s \tau=1s τ=1s

y ( t ) = [ y ( 0 + ) − y ( ∞ ) ] e − t τ + y ( ∞ ) y(t)=[y(0+)-y(\infin)]e^{-\frac{t}{\tau}}+y(\infin) y(t)=[y(0+)y()]eτt+y()

三要素带入得到:
u L ( t ) = [ u L ( 0 + ) − u ( ∞ ) ] e − t τ + u ( ∞ ) = [ 6 − 0 ] e − t 1 + 0 = 6 e − t \begin{aligned} u_L(t)&=[u_L(0+)-u(\infin)]e^{-\frac{t}{\tau}}+u(\infin)\\ &=[6-0]e^{-\frac{t}{1}}+0\\ &=6e^{-t} \end{aligned} uL(t)=[uL(0+)u()]eτt+u()=[60]e1t+0=6et

i L ( t ) = [ i L ( 0 + ) − i L ( ∞ ) ] e − t τ + i L ( ∞ ) = [ 6 − 9 ] e t 1 + 9 = 9 − 3 e − t \begin{aligned} i_L(t)&=[i_L(0+)-i_L(\infin)]e^{-\frac{t}{\tau}}+i_L(\infin)\\ &=[6-9]e^{\frac{t}{1}}+9\\ &=9-3e^{-t} \end{aligned} iL(t)=[iL(0+)iL()]eτt+iL()=[69]e1t+9=93et

三.6正弦激励下一阶电路的响应(未完待续)

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰球球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值