数值分析——曲线拟合的最小二乘法

本文介绍了曲线拟合的最小二乘原理,包括超定方程组的最小二乘解及其在直线和多项式拟合中的应用。通过实例展示了如何利用最小二乘法找到最佳拟合曲线的参数,适用于快速理解并应用到实际问题中,如智慧交通领域的数据分析。
摘要由CSDN通过智能技术生成

一、曲线拟合的最小二乘原理

拟合曲线定义:求近似函数 φ(x), 使之 “最好” 的逼近f(x) ,无需满足插值原则.
这就是曲线拟合问题。
(时间紧迫直接看例子就行,智慧交通专业的补修课,可能理论学的不那么深入,主要是方法。)

1. 超定方程组的最小二乘解

超定方程组是指方程个数大于未知量个数的方程组 。
最小二乘解: 对于方程组:Ax = b
在这里插入图片描述
如果有向量x使得 :在这里插入图片描述达到最小,则称x是该方程组的最小二乘解。

在这里插入图片描述
在这里插入图片描述

解题方法:

在这里插入图片描述

在这里插入图片描述
直接看例子:

在这里插入图片描述
上面法方程组的解,也就是超定方程组的最小二乘解。

在这里插入图片描述
解析:实际上是求拟合曲线φ(x)的参数a,b;将原问题转化为求法方程组的问题。

在这里插入图片描述

2. 直线拟合

例子在后面
在这里插入图片描述

3. 多项式拟合

求解过程与上面类似,因为其A(T)A 系数矩阵有一定的规律性,因此单独拿出来记忆。
在这里插入图片描述
A(T)A的特点:

  • n : 有n组实例数据表,n个方程组, i 的范围是1-n
  • m :φ(x)有 m 个待求系数,并且A(T)A 是m × m规格的矩阵
  • A(T)A :是对称矩阵
  • 直线拟合的矩阵其实就是多项式拟合的左上角2 × 2的部分

上栗子!

  1. 多项式拟合例子
    在这里插入图片描述
    在这里插入图片描述

  2. 直线拟合例子
    在这里插入图片描述
    下面给出一次拟合多项式的步骤:
    在这里插入图片描述

曲线拟合最小二乘法是一种通过最小化误差平方和来拟合一个近似函数的方法。它是基于最小二乘原则构造的,即通过最小化实际观测值与拟合函数之间的差异来找到最佳拟合曲线最小二乘法的原理是,对给定的一组数据点,我们要找到一个函数,使得该函数与这些数据点之间的误差最小。误差可以通过计算实际观测值与拟合函数在相应点上的差异来衡量。最小二乘法的目标是找到使得误差平方和最小的函数参数。 在曲线拟合最小二乘法中,我们可以使用不同的函数形式进行拟合,如直线拟合和多项式拟合。其中,直线拟合是通过一条直线来逼近数据点,而多项式拟合则使用多项式函数来逼近数据点。 需要注意的是,曲线拟合最小二乘法并不要求满足插值原则,即不一定要经过所有的数据点。它的目标是找到一个近似函数,使得在整个数据集上的误差平方和最小化。 总结起来,曲线拟合最小二乘法是一种通过最小化误差平方和来找到一个近似函数的方法。它可以使用不同的函数形式进行拟合,并且不要求满足插值原则。通过最小二乘法,我们可以得到一个最佳拟合曲线,使得拟合函数与实际观测值之间的差异最小化。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [数值分析——曲线拟合最小二乘法](https://blog.csdn.net/weixin_45506541/article/details/127364115)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [一文速学-最小二乘法曲线拟合算法详解+项目代码](https://blog.csdn.net/master_hunter/article/details/126058212)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值