最优化学习 算法收敛性

这篇博客深入探讨了最优化中的梯度下降法,包括其线性收敛性质。通过精确线搜索和非精确线搜索(如Amijo Rule)分析算法的收敛性,阐述了在不同搜索策略下如何影响优化过程的效率和精度。内容涵盖了二次型矩阵条件和优化算法的理论基础。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴:最优化学习目录


梯度下降法

d k + 1 = − ∇ f ( x k ) d^{k+1}=-\nabla f\left(x^{k}\right) dk+1=f(xk) f ( x k + 1 ) − P ∗ f ( x k ) − P ∗ ≤ 1 − m M \frac{f\left(x^{k+1}\right)-P^{*}}{f\left(x^{k}\right)-P^{*}} \leq 1-\frac{m}{M} f(xk)Pf(xk+1)P1Mm ≤ 1 − min ⁡ { 2 m γ α max ⁡ , 2 m γ β M } \leq 1-\min \left\{2 m \gamma \alpha_{\max }, \frac{2 m \gamma \beta}{M}\right\} 1min{2mγαmax,M2mγβ} K ∼ log ⁡ ( f ( x k ) − P ∗ ) 线 性 收 敛 K \sim \log \left(f\left(x^{k}\right)-P^{*}\right) \quad线性收敛 Klog(f(xk)P)线

在这里插入图片描述

分析算法收敛性 - 精确线搜索exact line search

∀ x ∈ d o m f , M I ⪰ ∇ 2 f ( x ) ⪰ m I \forall x \in d o m f, M I \succeq \nabla^{2} f(x) \succeq m I xdomf,MI2f(x)mI
在这里插入图片描述
在这里插入图片描述

分析算法收敛性 - 非精确线搜索Inexact line search(Amijo Rule)

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值