微积分有多重要相信大家多多少少心里都有点数,搞数学的不会微积分就跟中学生不
会“加减乘除”一样,基本上啥都干不了。牛顿是物理学界的封神人物,然而牛顿还凭借
着微积分的发明,跟阿基米德、高斯并称为世界三大数学家,这是何等荣耀?这又从侧
面反映出微积分是何等地位?

除了重要,很多人对微积分的另一个印象就是难。在许多人眼里,微积分就是高深数学
的代名词,就是高智商的代名词,许多家长一听说谁家孩子初中就学了微积分,立马就
感叹这是别人家的天才。其实不然,微积分并不难,它的基本思想甚至是非常简单的,
不然也不会有那么多初中生学习微积分的事了。
所以,大家在看这篇文章的时候不要有什么心理负担,微积分并不是什么很难的东西,
我们连高大上的麦克斯韦方程组都看过来了,还怕什么微积分对不对?只要跟着长尾科技的思路走,我相信一般的中学生都是可以非常顺畅地理解微积分的。
好,下面进入正题。
01从面积说起
我们从小学就学了各种求面积的公式,什么长方形、三角形、圆、梯形等等,然后“求
阴影部分的面积”就成了小时候的一块心理阴影。

不知道大家当时有没有想过一个问题:好像我们每学一种新图形就有一个新的面积公
式,可是,世界上有无数种图形啊,难道我要记无数种公式么?这太令人沮丧了!
更令人沮丧的是,还有很多图形根本就没有什么面积公式。比如我随手在纸上画一条曲
线,这条曲线围成的面积你要用什么公式来算?但是,它确实围成了一块确定大小的区
域啊,大小是确定的就应该能算出面积来,算不出来就是你的数学不行,对吧?于是,
这个事就深深地刺痛了数学家们高傲的内心,然后就有很多人来琢磨这个事,比如阿基
米德。

如何求一条曲线围成的面积?
面对这个问题,古今中外的数学家的想法都是类似的,那就是:用我们熟悉的图形(比
如三角形、长方形等)去逼近曲线围成图形的面积。这就好比在铺地板砖的时候,我们
会用尽可能多的瓷砖去填满地板,然后这些瓷砖的面积之和差不多就是地板的面积。
阿基米德首先考虑抛物线:如何求抛物线和一条直线围成的面积?抛物线,顾名思义,
就是你往天上抛一块石头,这块石头在空中划过的轨迹。如下图的外层曲线:

这条抛物线和直线BC围成了一个弓形(形状像一把弓箭,涂了颜色的部分),这个弓
形的面积要怎么求呢?阿基米德的想法是用无数个三角形去逼近这个弓形,就好像我们
用很多三角形的瓷砖去铺满这块弓形的地板一样。
他先画了一个蓝色的大三角形ABC(这个三角形并不是随意画的,抛物线在A点处的切
线必须跟BC平行。这里我们不细究,只要知道能够画出这样一个三角形就行)。当然,这个三角形ABC的面积肯定比弓形的面积小,小多少呢?显而易见,小了左右两边
两个小弓形的面积。
如果我们能把这两个小弓形的面积求出来,加上三角形ABC就可以求出原来大弓形的面
积了。但是,如何求这两个小弓形的面积呢?答案是:继续用三角形去逼近!
于是,阿基米德又使用同样的方法,在这两个小弓形里画了两个绿色的三角形。同样
的,在这两个小弓形被两个绿色三角形填充之后,我们又多出了四个弓形,然后我们又
用四个黄色的三角形去填充剩余的弓形……

很显然,这个过程可以无限重复下去。我们可以用1个蓝色,2个绿色的,4个黄色的,
8个红色的等无穷多个三角形来逼近这个弓形。我们也能很直观地感觉到:我们使用的
三角形越多,这些三角形的面积之和就越接近大弓形的面积。用三角形的面积之和来逼
近这个弓形面积,这我没意见,但关键是你要怎样求这么多三角形(甚至是无穷多个三
角形)的面积呢?
这就是阿基米德厉害的地方,他发现:每次新画的三角形的面积都是上一轮三角形面积
的1/4。也就是说,2个绿色三角形的面积之和刚好是1个蓝色三角形面积的1/4;4个
黄色的三角形的面积之和刚好是2个绿色三角形的1/4,那么就是1个蓝色三角形面积的
1/16,也就是(1/4)²……
如果我们把所有三角形的面积都折算成第一个蓝色三角形ABC(用△ABC表示)的面
积,那么大弓形的面积S就可以这样表示:
S=△ABC+(1/4)△ABC+(1/4)²△ABC +(1/4)³△ABC……
这东西放在今天就是一个简单的无穷级数求和问题,但阿基米德是古希腊人,那是秦始
皇都还没统一中国的年代,什么高等数学更是不存在的,怎么办呢?阿基米德计算了几项,直觉告诉他这个结果在不断地逼近(4/3)△ABC,也就是说你
用的三角形越多,面积S就越接近(4/3)△ABC。于是阿基米德就猜测:如果我把无穷
多个三角形的面积都加起来,这个结果应该刚好等于(4/3)△ABC。
当然,光猜测是不行的,数学需要的是严格的证明,然后阿基米德就给出了证明。他证
明如果面积S大于(4/3)△ABC会出现矛盾,再证明如果它小于(4/3)△ABC也会出
现矛盾,所以这个面积S就只能等于(4/3)△ABC,证毕。
就这样,阿基米德就严格地求出了抛物线和直线围成的弓形的面积等于△ABC的4/3,
他使用的这种方法被称为“穷竭法”。
02一千年以后
时光荏苒,再见已经是一千八百年后的十七世纪了。
穷竭法可以精确地算出一些曲线围成的面积,但是它有个问题:穷竭法对于不同曲线围
成的面积使用不同的图形去逼近。比如上面使用的是三角形,在其它地方就可能使用其
它图形,不同图形证明技巧就会不一样,这样就比较麻烦。
到了十七世纪,大家就统一使用矩形(长方形)来做逼近:不管你是什么曲线围成的图
形,我都用无数个矩形来逼近你,而且都沿着x轴来做切割。这样操作上就简单多了。
还是以抛物线为例,这次我们考虑 简单的抛物线y=x²,它的图像大概就是下面这样
(每取一个x的值,y的值都是它的平方),我们来具体算一算这条抛物线在0到1之间
与x轴围成的面积是多少。

我们用矩形来逼近原图形,容易想象,矩形的数量越多,这些矩形的面积之和就越接近
曲线围成的面积。这个思路跟穷竭法类似,但是更容易理解。
我们假设0到1之间被平均分成了n份,那么每一份的宽度就是1/n。而矩形的高度就是
函数的纵坐标的值,纵坐标可以通过y=x²很容易算出来。于是,我们就知道,第1个矩
形的高度为(1/n)²,第2个为(2/n)²,第3个为(3/n)²……
有了宽和高,把它们乘起来就是矩形的面积。于是,所有矩形的面积之和S就可以写成
这样:

这只是一段普通的化简,相信大家只要知道平方和公式是下面这样就秒懂了:

于是,我们就得到了n个矩形面积之和的表达式:

因为n是矩形的个数,n越大,矩形的数量就越多,那么这些矩形的面积之和就越接近
曲线围成的面积。所以,如果n变成了无穷大,我们从“直觉”上认为,这些矩形的面积
之和就应该等于抛物线围成的面积。
与此同时,如果n是无穷大,那么这个表达式的后两项1/2n和1/6n²从直觉上来看就应
该无限趋近于0,或者说等于无穷小,似乎也可以扔掉了。
于是,当n趋向于无穷大的时候,面积S就只剩下第一项1/3。所以,我们就把抛物线
y=x²与x轴在0到1之间围成的面积S算出来了,结果不多不少,就等于1/3。
看完这种计算方法,大家有什么想说的?觉得它更简单,更神奇了,或者其它什么的?
大家注意一下我的措辞,在这一段里我用一些诸如“直觉上”、“应该”、“似乎”这种不是很精确的表述。在大家的印象里,数学应该最精确、最严密的一门学科啊,怎么能用这
些模糊不清的词来形容呢?
03严密性和实用性
然而,这正是问题所在:不是我不想讲清楚,而是在这个时候根本就讲不清楚。别说我
讲不清楚,牛顿和莱布尼茨也讲不清楚,这跟阿基米德用穷竭法求面积时的那种精确形
成了鲜明的对比。
使用穷竭法求面积,比如为了得到4/3△ABC,阿基米德就去证明如果它大于4/3会出
现矛盾,小于4/3也会出现矛盾,所以你就必须等于4/3。这是非常严密的,虽然操作
上麻烦了点,但是逻辑上无懈可击。

但是到了17世纪,我们是怎么得到抛物线与x轴围成的面积等于1/3的呢?我们得到了n
个矩形的面积公式:

然后,我们觉得当n越来越大的时候,后面两项1/2n和1/6n²的值会越来越小,当n变
成无穷大的时候,后面两项应该就是无穷小。于是,我们就认为可以把它直接舍弃了,
所以面积S就只剩下第一项1/3。但问题是,无穷小是多小?从直觉上来看,不论n取多大,1/2n和1/6n²都应该是大于
0的,我们可以直接把0舍掉,但是对于并不等于0的数我们能直接舍弃掉么?这样做的
合法性依据在哪里?
相对于古希腊的穷竭法,17世纪这种“统一用矩形来逼近原图形”的想法简单了不少,但
同时也失去了一些精确性。虽然它计算的结果是正确的,但是它的逻辑并不严密。逻辑
不严密的话,你拿什么保证你今天这样用是正确的,明天我那样用它还是正确的?
想想数学为什么这么令人着迷,为什么《几何原本》至今都保持着无与伦比的魅力?不
就是因为数学的血液里一直流淌着无可挑剔的逻辑严密性么?

古希腊人或许早就知道17世纪这种更简单的计算方法,但是因为方法不够严密,所以
他们压根不屑于使用。他们宁可绕弯使用更麻烦,但是在逻辑上无懈可击的穷竭法,因
为对他们而言:逻辑的严密性,远比计算结果的实用性重要。
在对严密性和实用性的取舍上,东西方走了截然不同的两条路:古代中国毫不犹豫地选
择了实用性。他们需要数学帮助国家计算税收,计算桥梁房屋等建筑工程,计算商业活
动里的各种经济问题。所以,代表中国古代数学的《九章算术》,里面全是教你怎么巧
妙地计算这个计算那个。也因此,古代中国会有那么多能工巧匠,会有那么多设计精巧
的建筑工程。

西方则截然相反,古希腊人坚定不移的选择了严密性。他们需要严密的逻辑帮他们认识
世界的本原,认识世界是由什么组成的,为什么世界会是现在这个样子。所以,代表西
方古代数学的《几何原本》就是教你怎么从5个显而易见的公理出发,通过严密的逻辑
一步步推导出400多个多定理,即便这些定理并不显而易见。因此,西方能诞生现代科
学。
失去简单性,数学会失去很多;失去严密性,数学将失去一切。至于如何让它变得严
密,后面我们再细说。
待续。。。