MATLAB-6-5常微分方程数值求解

1. 常微分方程数值求解的一般概念

2. 常微分方程数值求解函数

[t,y]=solver(filename,tspan,y0,option)
t:时间向量; y:数值解;
filename:定义f(t,y)的函数名,该函数必须返回一个列向量;
tspan形式为[t0,tf],表示求解区间; y0:初始状态向量;
option:可选参数,用于设置求解属性,常用的属性包括相对误差值RelTol(默认值为10-3和绝对误差值AbsTol(默认值为10-6);

3. 常微分方程数值求解函数统一命名格式

odennxx

  • ode:Ordinary Differential Equation,常微分方程
  • nn:数字,代表所用方法的阶数。
    ode23采用2阶龙格-库塔(Runge-Kutta)算法,用3阶公式做误差估计来调节步长,具有低等精度。
    ode45采用4阶龙格-库塔算法,用5阶公式做误差估计来调节步长,具有中等精度。
  • xx:字母,用于标注方法的专门特征。
    ode15s、ode23s中的“s”代表(Stiff),表示函数适用于刚性方程。
    在这里插入图片描述
    e.g.求解微分方程初值问题,并与精确解y(t)=sqrt(t+1)+1,进行比较。
    在这里插入图片描述
>> f=@(t,y)(y^2-t-2)/4/(t+1);
>> [t,y]=ode23(f,[0,10],2);
>> y1=sqrt(t+1)+1;
>> plot(t,y,'b:',t,y1,'r')

在这里插入图片描述
e.g.已知一个二阶线性系统的微分方程为:
在这里插入图片描述

>> f=@(t,x) [-2,0;0,1]*[x(2);x(1)];
>> [t,x]=ode45(f,[0,20],[1,0]);
>> subplot(2,2,1);
>> plot(t,x(:,2));
>> subplot(2,2,2);
>> plot(x(:,2),x(:,1));

在这里插入图片描述

4. 刚性问题

有一类常微分方程,其解的分量有的变化很快,有的变化很慢,且相差悬殊,这就是所谓的刚性问题(Stiff)。对于刚性问题,数值解算法必须取很小步长才能获得满意的结果,导致计算量会大大增加。解决刚性问题需要有专门方法。非刚性算法可以求解刚性问题,只不过需要很长的计算时间。
在这里插入图片描述

>> lambda=0.01;
>> f=@(t,y) y^2-y^3;
>> tic;
>> [t,y]=ode45(f,[0,2/lambda],lambda);
>> toc
时间已过 32.701709 秒。
>> disp(['ode45计算的点数' num2str(length(t))]);
ode45计算的点数157
%tic和toc函数用来记录微分方程求解命令执行的时间,使用tic函数启动计时器,使用toc函数显示从计时器启动到当前所经历的时间。最后还输出计算的点数,运行结果表明这时常微分方程不算很刚性。
>> lambda=1e-5;
>> f=@(t,y) y^2-y^3;
>> tic;
>> f=@(t,y) y^2-y^3;
>> toc
时间已过 7.096559 秒。
>> disp(['ode45计算的点数' num2str(length(t))]);
ode45计算的点数157
这时计算时间明显加长,计算的点数剧增,表明这时常微分方程表现为刚性
>> lambda=1e-5;
>> f=@(t,y) y^2-y^3;
>> tic;
>> [t,y]=ode15s(f,[0,2/lambda],lambda);
>> toc
时间已过 8.699999 秒。
>> disp(['ode15s计算的点数' num2str(length(t))]);
ode15s计算的点数98
对于刚性问题,选择以“s”结尾的函数,专门用于求解刚性方程。计算时间大大缩短,计算的点数大大减少。
相同程序,每次的计算时间都不相同
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值