小红书&中科大 | LLM在笔记推荐中的首次落地

c1335645ac7fdd59b2f00d67a5284e15.jpeg

image-20240619172414638

https://arxiv.org/pdf/2403.01744v2

简介

本文来自小红书和中科大, 首次尝试了将LLM应用到笔记推荐(Note Recommendation)中. 更具体的,

  • 本文在推荐链路(召回->粗排->精排->重排)的召回环节, 新上(或替换了)一路现有的I2I(Item2Item, 这里item其实是Note)召回.

  • 模型核心点是: 如何考虑用户共点击行为和属性/标签, 对LLM模型LLama2进行微调, 使之可以适配推荐场景的需求?

  • 在线A/B测试的提升也非常显著. 对比之前的SentenceBERT , LLMNote的ctr提升高达16.20%. 但这应该是单路召回的对比提升. 实际大盘应该关注在 笔记的评论量(number of comments)和每周创作者数(weekly number of publishers), 前者和I2I的提升更相关, 后面的提升更间接.

下面是个简单的流程示例

  • 底层设计和使用了多种prompt. 比如Note Emb 和 Output Guidance, 分别用于得到note的embedding和相关属性标签.

  • 中间是微调好的NoteLLM

  • 上层是如何进行服务的, 包括标签/属性生产, 然后从候选的note pool筛选出相关的note.  这里是基于Singapore的Note, 召回了另1个与Singapore相关的Note(红色箭头部分).

bf614a8d80c1cc29d9240bf911c24371.jpeg
image-20240619173541080

模型

下面是更具体的训练流程, 主要有3块: prompt的构建, 以及2种训练任务

3de5ca7d9db02438f1052a47e92b9cc2.jpeg
image-20240619175128648

Prompt结构

对于第i篇笔记, 其主要由4部分组成, 分别代表标题(title), 标签(hashtag), 类目(category)和内容(content).

ac3343edbbb4189bd3cff1ae8664929b.jpeg
image-20240619182021284

相应的, prompt的结构如下:

3a1743ed0b449427e07b54dd8373122a.jpeg
image-20240619182308974

这里[EMB]代表经过LLM生成的笔记的embedding, 用于后续的对比学习任务.

类目生成的prompt

e2f17fc7520ee8f46f099ab834a33c0c.jpeg
image-20240619182342244

标签主题生成的prompt

052a582c44785a863d670f964c28cc2a.jpeg
image-20240619182413942

共现相似笔记对的构建 -> 对比学习(Generative-Contrastive Learning)

29cd483e209c1229a11ffba5c54414f7.jpeg

如上图, 主要就2步:

(1) 共现统计来构建相似笔记对. 这里思路比较常见, 就是统计2个笔记被哪些用户共同点击过, 次数越多, 笔记越像.

59251c0c711880884ddab3bb5adae6b0.jpeg

(2) 正负样本对比loss. 正样本相似度大于负样本.

d1586b9013d92fea9f84c91bc186357c.jpeg

标签/类目的预测任务(Collaborative Supervised Fine-Tuning)

对于这部分, 文中介绍的较为简洁, 主要是1个预测公式和loss计算.

17209f2bad59874a303df066fdcabda1.jpeg
image-20240619182924424

最后, 把2种loss做了个加权融合(调控), 进行联合训练

89b4daa571e349c13de1c96020c02fb3.jpeg
image-20240619183026047

实验

效率实验都比base要好一些, 这里简单罗列一下. 召回离线评估指标选取的是经典的Recall系列.

a4e1c777b053d7ade614bc54c2325106.jpeg
image-20240619183434864

后面的参数实验也调整了, 但是看起无明显规律, 且的时候效果也还不错...

a903c283070116dc5a84608f47c4de65.jpeg

作者也找了一些case去看, 基本符合预期.

0aa0b6cca23a135964d4a600ce0d7104.jpeg
image-20240619183352359
  • 15
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LLM(基于学习的管理方法)是一种在智能决策广泛应用的方法。LLM适用于各种领域,如金融、医疗、交通等。 首先,LLM利用机器学习算法对大量数据进行分析和预测。它可以通过学习历史数据的模式和趋势,将其应用于决策问题。通过分析数据,LLM可以发现隐藏在大量数据的规律和关联,为决策提供有力的支持。例如,在金融领域LLM可以分析市场数据、企业财务报表等信息,预测股票的涨跌趋势,从而帮助投资者做出明智的投资决策。 其次,LLM还可以进行优化和调整。它可以不断学习和改进,根据反馈信息进行自适应调整。通过与环境的互动,LLM可以不断优化模型,并根据情况调整决策策略。例如,在交通管理LLM可以通过分析交通流量数据,根据实时情况调整路线规划,降低交通拥堵,提高通行效率。 此外,LLM在智能决策的应用还包括风险评估、问题诊断和策略制定等方面。通过对历史数据和现有情况的分析,LLM可以预测潜在风险和问题,并提供相应的策略和措施。例如,在医疗领域LLM可以通过分析患者的病历和病情数据,预测患者的病情发展趋势,帮助医生制定更准确的治疗方案。 综上所述,LLM在智能决策的应用广泛且重要。它利用机器学习算法对大量数据进行分析和预测,为决策提供有力的支持。同时,LLM还可以进行优化和调整,根据环境的变化不断改进决策策略。LLM的应用可以提高决策的准确性和效率,在各个领域发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值