小红书&中科大 | LLM在笔记推荐中的首次落地

c1335645ac7fdd59b2f00d67a5284e15.jpeg

image-20240619172414638

https://arxiv.org/pdf/2403.01744v2

简介

本文来自小红书和中科大, 首次尝试了将LLM应用到笔记推荐(Note Recommendation)中. 更具体的,

  • 本文在推荐链路(召回->粗排->精排->重排)的召回环节, 新上(或替换了)一路现有的I2I(Item2Item, 这里item其实是Note)召回.

  • 模型核心点是: 如何考虑用户共点击行为和属性/标签, 对LLM模型LLama2进行微调, 使之可以适配推荐场景的需求?

  • 在线A/B测试的提升也非常显著. 对比之前的SentenceBERT , LLMNote的ctr提升高达16.20%. 但这应该是单路召回的对比提升. 实际大盘应该关注在 笔记的评论量(number of comments)和每周创作者数(weekly number of publishers), 前者和I2I的提升更相关, 后面的提升更间接.

下面是个简单的流程示例

  • 底层设计和使用了多种prompt. 比如Note Emb 和 Output Guidance, 分别用于得到note的embedding和相关属性标签.

  • 中间是微调好的NoteLLM

  • 上层是如何进行服务的, 包括标签/属性生产, 然后从候选的note pool筛选出相关的note.  这里是基于S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值