https://arxiv.org/pdf/2403.01744v2
简介
本文来自小红书和中科大, 首次尝试了将LLM应用到笔记推荐(Note Recommendation)中. 更具体的,
本文在推荐链路(召回->粗排->精排->重排)的召回环节, 新上(或替换了)一路现有的I2I(Item2Item, 这里item其实是Note)召回.
模型核心点是: 如何考虑用户共点击行为和属性/标签, 对LLM模型LLama2进行微调, 使之可以适配推荐场景的需求?
在线A/B测试的提升也非常显著. 对比之前的SentenceBERT , LLMNote的ctr提升高达16.20%. 但这应该是单路召回的对比提升. 实际大盘应该关注在 笔记的评论量(number of comments)和每周创作者数(weekly number of publishers), 前者和I2I的提升更相关, 后面的提升更间接.
下面是个简单的流程示例
底层设计和使用了多种prompt. 比如Note Emb 和 Output Guidance, 分别用于得到note的embedding和相关属性标签.
中间是微调好的NoteLLM
上层是如何进行服务的, 包括标签/属性生产, 然后从候选的note pool筛选出相关的note. 这里是基于S