PAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence),IEEE模式分析与机器智能汇刊,简称PAMI,是IEEE最重要的学术性汇刊之一。事实上,PAMI有着超高的影响因子(17.730)和排名,被誉为SCI之王。与顶级会议相比,顶级期刊的评议过程更为严格,特别重视工作的创新性和完整性,录取难度和门槛很高。
本期小编挑选了5篇PAMI2021中关于GNN的论文(附论文下载地址)分享给大家~ 包括图池化,ARMA滤波的GNN,GNN的Inductive-Transductive预测, GNN在多标签中的应用和GNN中的受限传播~
论文清单
Topology-Aware Graph Pooling Networks
Graph Neural Networks with Convolutional ARMA Filters
On Inductive-Transductive Learning with Graph Neural Networks
Learning Graph Convolutional Networks for Multi-Label Recognition and Applications
Deep Constraint-based Propagation in Graph Neural Networks
1 Topology-Aware Graph Pooling Networks
(论文下载地址:https://arxiv.org/abs/2010.09834)

本文介绍了5篇2021年PAMI上关于图神经网络(GNN)的顶级论文,涉及图池化、ARMA滤波的GNN、Inductive-Transductive学习、多标签识别及GNN中的约束传播。这些研究展示了GNN在处理图数据的创新方法,如拓扑感知池化和ARMA滤波,提升了模型性能。
最低0.47元/天 解锁文章
761

被折叠的 条评论
为什么被折叠?



