PAMI-2021:5篇顶级GNN论文

本文介绍了5篇2021年PAMI上关于图神经网络(GNN)的顶级论文,涉及图池化、ARMA滤波的GNN、Inductive-Transductive学习、多标签识别及GNN中的约束传播。这些研究展示了GNN在处理图数据的创新方法,如拓扑感知池化和ARMA滤波,提升了模型性能。

PAMI(IEEE Transactions on Pattern Analysis and Machine Intelligence),IEEE模式分析与机器智能汇刊,简称PAMI,是IEEE最重要的学术性汇刊之一。事实上,PAMI有着超高的影响因子(17.730)和排名,被誉为SCI之王。与顶级会议相比,顶级期刊的评议过程更为严格,特别重视工作的创新性和完整性,录取难度和门槛很高。

本期小编挑选了5篇PAMI2021中关于GNN的论文(附论文下载地址)分享给大家~ 包括图池化,ARMA滤波的GNN,GNN的Inductive-Transductive预测, GNN在多标签中的应用和GNN中的受限传播~

论文清单

  1. Topology-Aware Graph Pooling Networks

  2. Graph Neural Networks with Convolutional ARMA Filters

  3. On Inductive-Transductive Learning with Graph Neural Networks

  4. Learning Graph Convolutional Networks for Multi-Label Recognition and Applications

  5. Deep Constraint-based Propagation in Graph Neural Networks

1 Topology-Aware Graph Pooling Networks

(论文下载地址:https://arxiv.org/abs/2010.09834)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值