信息安全数学基础期中部分题目及总结

本文总结了一次信息安全数学基础考试中关于同余式和证明题的部分,包括如何求解同余式、证明(am,bm)=(a,b)m以及通过反证法证明素数整除性质和形如4k+3的素数有无数个。" 79808509,7552358,Spring Security Oauth2 源码解析:认证与授权流程,"['Spring Security', 'OAuth2.0', '认证授权', '源码解析', 'token管理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:考试题目涉及同余,同余式,整除,由于我没有把复习重点放在证明题上,导致有大半的证明题不会证,填空题也不知道哪错了,整个翻车,我已经无法直视我的试卷了,现记录总结,耗耗饭丝。由于记不清所有的题目了,所以只有部分题目的总结

1.求解同余式:
127x≡1002(mod 1012)
在这里插入图片描述
在这里插入图片描述
解:第一步:先求最大公因数d=(127,1012)=1,1|1002,原同余式有解
第二步:运用欧几里得算法,求同余式127x≡1 (mod 1012)的唯一解,由于sa+tm=(a,m)=1,(好家伙,这里考试的时候忘记怎么求逆元了,一直算不出来)
1012=127×7+123
127=123×1+4
123=4×30+3
4=3×1+1

1=4-3
=4-(123-4×30)
=127-123-[123-(127-123)×30]
&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值