前言:考试题目涉及同余,同余式,整除,由于我没有把复习重点放在证明题上,导致有大半的证明题不会证,填空题也不知道哪错了,整个翻车,我已经无法直视我的试卷了,现记录总结,耗耗饭丝。由于记不清所有的题目了,所以只有部分题目的总结
1.求解同余式:
127x≡1002(mod 1012)
解:第一步:先求最大公因数d=(127,1012)=1,1|1002,原同余式有解
第二步:运用欧几里得算法,求同余式127x≡1 (mod 1012)的唯一解,由于sa+tm=(a,m)=1,(好家伙,这里考试的时候忘记怎么求逆元了,一直算不出来)
1012=127×7+123
127=123×1+4
123=4×30+3
4=3×1+1
1=4-3
=4-(123-4×30)
=127-123-[123-(127-123)×30]
&#