Numpy和Pandas中关于axis的定义和理解

数据分析的数组函数中(Series和DataFrame……),常常会涉及到轴参数的设置:axis=0、1。
1.当 axis=0 == axis=index,意味着:数组中的所有元素(包括行索引(index)),都被视为(单独的)列向量;在各列向量、或单独一列的行索引上,执行相应操作。

2.当 axis=1 == axis=columns,意味着:数组中的所有元素(包括列索引(columns)),都被视为(单独的)行向量;在各行向量、或单独一行的列索引上,执行相应操作。

举例:

  1. np.sum(x1, axis=0)
    即:将x1视为多个单独的 列向量,计算各列的和;(当然不需要考虑索引)。

  2. x1.sort_index(axis=1) == x1.sort_index(axis='columns')
    即:将x1视为多个单独的行向量(包含列索引),按照 列索引 的顺序,进行各列的排序(简单理解为’键’的排序)。

  3. x1.drop('one',axis=0)==x1.drop('one',axis='index')
    即:将x1视为多个单独的列向量(包含行索引),按照 行索引 的名称匹配,删除行索引对应的 行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值