开宝箱-抽装备-求期望(概率论与数理统计 & python)

本文探讨了游戏中开宝箱获得特定装备的概率问题。玩家在放回条件下,获得装备A(5%概率)和B(15%概率)的组合,通过列出可能情况、探索规律并运用概率公式,计算出期望的游戏币花费。文章提供了Python代码实现来求解这个问题,并展示了运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

玩家在游戏中开宝箱有概率获得装备A和B,开一次宝箱需要100游戏币,每次只能获得一个道具,其中获得装备A的概率5%,获得装备B的概率为15%。请问,玩家在放回随机的条件下获得一套A和B,需要游戏币的期望是多少?请写出计算过程。

解题思路

  1. 列举可能性,探索规律(统计数量)‘
    在这里插入图片描述
  2. 考虑抽取顺序(排序去重)
    计算开箱次数的公式:
    n u m = ∑ a = 2 n a × [ ∑ b = 1 a − 1 C a − 1 b × ( 0.05 × 0.1 5 b + 0.15 × 0.0 5 b ) × 0. 8 a − 1 − b ] num = \sum_{a=2}^na\times[\sum_{b=1}^{a-1}C_{a-1}^b\times(0.05\times0.15^b+0.15\times0.05^b)\times0.8^{a-1-b}] num=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值