问题描述
玩家在游戏中开宝箱有概率获得装备A和B,开一次宝箱需要100游戏币,每次只能获得一个道具,其中获得装备A的概率5%,获得装备B的概率为15%。请问,玩家在放回随机的条件下获得一套A和B,需要游戏币的期望是多少?请写出计算过程。
解题思路
- 列举可能性,探索规律(统计数量)‘
- 考虑抽取顺序(排序去重)
计算开箱次数的公式:
n u m = ∑ a = 2 n a × [ ∑ b = 1 a − 1 C a − 1 b × ( 0.05 × 0.1 5 b + 0.15 × 0.0 5 b ) × 0. 8 a − 1 − b ] num = \sum_{a=2}^na\times[\sum_{b=1}^{a-1}C_{a-1}^b\times(0.05\times0.15^b+0.15\times0.05^b)\times0.8^{a-1-b}] num=