13年
某校学生参加数学、物理、英语三科竞赛,某班30名学生中15人参加了数学竞赛,8人参加了物理竞赛,6人参加了英语竞赛,并且其中3人三科竞赛都参加了,则至少有多少人一科竞赛都没参加。
A、7
B、8
C、9
D、10
解析:对于这类题型可以采用容斥原理。
设参加数学,物理有x人;参加数学,英语有y人;参加英语,物理有z人;由于有3人三科全参加,则x,y,z的最小值就是3,即单独参加2科的人没有。利用容斥原理可知:30=15+8+6-x-y-z+3+k;容斥原理不会的可以看后续博客更新知识点。此时k=x+y+z-2;求至少有多少人一科竞赛都没参加,则就是在求x,y,z的和的最小值,当x=y=z=3时,k取最小值7;
设f:N×N→N,f((x,y))=x*y。则f是单射、满射或双射?
A、f是双射
B、f既不是单射也不是满射
C、f是单射但不是满射
D、f不是单射但是满射
解析:要明白什么是单射,满射,双射;单射:类比于函数,每一个x都有唯一对应的F(x),并且对于不同的x,y值F(x)!=F(y);满射:对于集合A,B来说若A集合中的元素x存在F(x)=y∈B,并且B中集合元素均被映射就说是满射,简单来说就是B集合中元素都能被取到就是满射;双射:既满足单射又满足满射。
对于N来说任取(1,N)均能取到N的值,所以f一定是满射的,但是f((1,2))=f((2,1))=1*2=2*1,有两个不同的自变量可以取到相同的因变量所以不是单射
14年
化简(A∪(B\C)∩A)∪(A\(B∩C)∪(A∩B∩C))
A. A∪B
B. A∪C
C. A
D. B
解析:有2种方法:第一种采用逻辑推理,利用交并差等运算;第二种采用赋值法算出等式的值。
已知A△B={1,2,3},A△C={2,3,4},若2∈B,则
A、1∈C
B、2∈C
C、3∈C
D、4∈C
解析:对称差可以表示为A\B和B\A的并集,通俗点说就是AB的并集减去AB的交集;
A△B={1,2,3}表示AB的交集没有123
A△C={2,3,4}表示AC的交集没有234
如果2是B中的元素,则2一定不在A中,但是A△C中有2所以2一定是C的元素
设A,B为集合,使下列两式A\B=B\A和(A\B)∪B=(A∪B)\B成立的充要条件 是什么?
A、A⊆B
B、B⊆A
C、A=B
D、A=B=∅
解析:充要条件通常利用文氏图来看;
设A={1,2,3},则A上可以定义多少个自反且对称的二元关系?
A、8
B、27
C、64
D、512
解析:对于这种题可以采取画矩阵来判断
1 | a12 | a13 |
a21 | 1 | a23 |
a31 | a32 | 1 |
自反矩阵对角线上一定全为1,对称在矩阵中体现为aij=aji,那么只要看上三角就可以,下三角跟上三角匹配即可;上三角只有3个未定值,所以有2^3=8种。
若R={(1,4),(2,3),(3,1),(4,3)},则传递闭包R+(或t(R))中不包含哪个序对?
A、(1,1)
B、(1,2)
C、(1,3)
D、(1,4)
解析:传递闭包t(R)=R^0∪R∪R^2.......∪R^n
t(R)={(1,4),(2,3),(3,1),(2,1),(4,3),(1,3),(1,1)}
设V={a,b,c,d},则与V构成强连通图的边集是哪一个?
A、E1={(a,c),(b,a),(b,c),(d,a),(d,c)}
B、E2={(a,b),(a,c),(a,d),(b,d),(c,d)}
C、E3={(a,d),(b,a),(b,d),(b,c),(d,c)}
D、E4={(a,d),(b,a),(b,d),(c,b),(d,c)}
解析:强联通:有向图每个结点之间都有一条通路。
无向图G的边数q=16,3个4度顶点,4个3度顶点,其余顶点的度均小于3,则G中至少有多少个顶点?
A、15
B、14
C、11
D、10
解析:考察两个知识点:1、度数之和等于边数的两倍;2、边数=节点数-1;
度数之和=16*2=32=3*n4+4*n3+其他=24+其他;
当其余顶点度数为2时,此时顶点数最少为8\2+3+4=11
设d1,d2,…,dp为p个互不相同的正整数,则是否存在一个p阶的(简单)无向图G,使得G的各个顶点的度数序列恰好为d1,d2,…,dp?
A、存在
B、不存在
C、不确定
D、以上结论都不对
解析:假设p个数均小于等于p,由于互不相同,必然有一个整数=p;但是在无向图中p阶无向图的度数最大为p-1,所以一定不存在
15个学生,每个学生向其他学生中的3个学生各送一张贺年卡,则能否使得每个学生收到的卡均来自其送过卡的相同人?
A、能
B、不能
C、不确定
D、以上结论都不对
一个平面连通图有9个顶点,它们的度数分别为:2,2,2,3,3,3,4,4,5,则此图共有多少个面?
A. 5
B. 6
C. 7
D. 8
设A={1,2},则A上可以定义多少个等价关系和偏序关系?
A. 2,3
B. 2,4
C. 3,3
D. 3,2
解析:
等价关系满足自反,对称,传递;所以A上的等价关系只有2个:{(1,1),(2,2)},{(1,1),(1,2),(2,1),(2,2)}
偏序关系满足自反,反对称,传递;所以A上的偏序关系只有3个:{(1,1),(2,2)},{(1,1),(1,2),(2,2)},{(1,1),(2,1),(2,2)}
设R为实数集,映射f:R→R,g:R→R,且f(x)= 2x+1,g(x)=x/2,则f与g的合成映射是什么映射?
A、满射、不是单射
B、单射、不是满射
C、双射
D、不是满射、不是单射
解析:f是双射,g是双射,所以f·g也是双射
设有映射f:X→Y,A⊆X,令Ac是A对X的余集。当f分别是单射和满射时,给出f(Ac)和(f(A))c之间的关系。其中f(Ac)——用E表示;(f(A))c--用F表示。
A、F⊆E,E⊆F
B、F⊆E,E=F
C、E=F,F⊆E
D、E⊆F,F⊆E
解析:x∈A,f(x)=y,如果是单射,则f(a)!=f(b)<—>a!=b,但是Y没有被完全映射。E⊆F;如果是满射,E⊆F举例论证即可
14设无向树T有7片叶子,其余顶点的度数均为3,则满足此条件的非同构的无向树T的个数有多少?
A、2
B、3
C、4
D、5
15年
设A,B为集合,使下列两式A\B=∅和(A∪B)\B=(A\B)∪B同时成立的充要条件时什么?
A、 A⊆B
B、 B⊆A
C、A=B
D、A=B=∅
若映射f和g的合成g·f是双射,则下列论断哪个是正确的?
A、f和g都是双射
B、f是单射,g是满射
C、f是满射,g是单射
D、以上论断都不对
解析:合成的条件
设A={1,2,3},则A上可以定义多少个自反的二元关系?
A、16
B、32
C、64
D、128
解析:自反只需要二元关系矩阵对角线全是1即可,剩下6个位置共有2^6=64种可能
1 | ||
1 | ||
1 |
设A={1,2,3},则A上至多可以定义多少个等价关系?
A、4
B、5
C、6
D、7
解析:等价关系分组:
分成3组:{{1},{2},{3}}
分成2组:1、{{1,2},{3}}
2、{{1,3},{2}}
3、{{2,3},{1}}
分成1组:{{1,2,3}}
自然数集N是可数的,则N*N是否可数?N的幂集2^N是否可数?
A、可数,可数
B、可数,不可数
C、不可数,可数
D、不可数,不可数
解析:可数集,是指每个元素都能与自然数集N的每个元素之间能建立一一对应的集合。如果将可数集的每个元素标上与它对应的那个自然数记号,那么可数集的元素就可以按自然数的顺序排成一个无穷序列a1,a2,a3,…an,…。比如全体正偶数的集合是一个可数集,全体正奇数的集合也是可数集
设A,B,C为任意集合,则下列论断哪个是正确的?
A、若A∈B,B⊆C,则A⊆C
B、若A⊆B,B∈C,则A∈C
C、若A∈B,B⊆C,则A∈C
D、若A⊆B,B∈C,则A⊆C
解析:此题的重点在于区分元素和集合,对于{1,2,3}不一定就是集合,可能是某个集合的元素,集合中对于元素的判定更加的宽泛,因此一个集合也可能是元素。
A:若A∈B,则A是B的一个元素,B⊆C那么A∈C。所以A错误
B:若A⊆B,B∈C,B是C的一个元素,那么若C包含A,一定是C的元素。其次A是B的子集不代表A等于B,B是C的元素推不出A是C的元素。例如A={1},B={1,2},C={{1,2}};此时A不是C的元素。所以B错误
C:A是B中的元素,C包含B那么A一定就是C的元素。所以C正确
D同B
设d=(d1,d2,…,dn),其中di为非负整数,i=1,2,…,n。若存在n个顶点的(简单)无向图,使得顶点vi的度为di,则称d是可图解的。下面给出的各序列中哪个是可图解的?
A、(1,1,1,2,3)
B、(1,2,2,3,4,5)\\奇度顶点有3个错误
C、(1,3,3,3)\\有1度顶点错误
D、(1,3,3,4,5,6,6)\\有1度顶点错误
解析:1、奇度顶点有偶数个;2、度数之和等于边数的二倍;3、度数最大值为n-1;4、如果出现2个及以上的n-1度顶点则图中必然没有1度顶点;
再一次危机擂台赛中,双方各出n名选手。比赛的规则是双方各自排个次序,设甲方排定的次序为x1,x2,…,xn,乙方排定的次序为y1,y2,…,yn。x1与y1先比赛,胜的一位与输方的下一位选手比赛,直到一方全败,比赛结束。则最多进行多少场比赛可定胜负(假定比赛不出现平局)。
A、2n+1
B、2n
C、2n-1
D、2n-2
解析:如果要场数最多,可以让每个人比两场第一场胜第二场负,但是最后一个人只能胜或者负,这样的话就是2n-1场
若(简单)无向图G与其补图Gc同构,则称G为自补图,则含5个顶点不同构的无向自补图的个数为多少?
A、1
B、2
C、3
D、4
设树T中有2n个度为1的顶点,有3n个度为2的顶点,有n个度为3的顶点,则这棵树T有几个点点和几条边?
A、11,11
B、11,10
C、12,12
D、12,11
解析:2n+3n*2+3*n=(2n+3n+n-1)*2解得n=2
共有12个点,11条边
设Z是整数集合,映射f:Z→Z,f(x)=|x|-2x,则f应满足什么性质?
A、单射
B、满射
C、双射
D、以上答案都不对
解析:
当x>0,f(x)=-x;
当x<0,f(x)=-3x
由图象可知,f满足单射,但是f(x)!=1所以f不是满射
设A与B是两个任意集合,若{A∩B,B\A}是A∪B的一个划分,则A和B有何关系?
A、A\B=∅
B、B\A=∅
C、A=B=∅
D、以上答案都不对