离散数学专题

文章涉及了多个数学和图论问题,包括容斥原理在解决竞赛参与人数问题中的应用,单射、满射和双射的概念解释,无向图的强连通、顶点度数和边的数量关系,以及等价关系和偏序关系的定义和计算。此外,还讨论了映射的双射性以及图的自补图问题。
摘要由CSDN通过智能技术生成

13年

  1. 某校学生参加数学、物理、英语三科竞赛,某班30名学生中15人参加了数学竞赛,8人参加了物理竞赛,6人参加了英语竞赛,并且其中3人三科竞赛都参加了,则至少有多少人一科竞赛都没参加。

A、7

B、8

C、9

D、10

解析:对于这类题型可以采用容斥原理。

设参加数学,物理有x人;参加数学,英语有y人;参加英语,物理有z人;由于有3人三科全参加,则x,y,z的最小值就是3,即单独参加2科的人没有。利用容斥原理可知:30=15+8+6-x-y-z+3+k;容斥原理不会的可以看后续博客更新知识点。此时k=x+y+z-2;求至少有多少人一科竞赛都没参加,则就是在求x,y,z的和的最小值,当x=y=z=3时,k取最小值7;

  1. 设f:N×N→N,f((x,y))=x*y。则f是单射、满射或双射?

A、f是双射

B、f既不是单射也不是满射

C、f是单射但不是满射

D、f不是单射但是满射

解析:要明白什么是单射,满射,双射;单射:类比于函数,每一个x都有唯一对应的F(x),并且对于不同的x,y值F(x)!=F(y);满射:对于集合A,B来说若A集合中的元素x存在F(x)=y∈B,并且B中集合元素均被映射就说是满射,简单来说就是B集合中元素都能被取到就是满射;双射:既满足单射又满足满射。

对于N来说任取(1,N)均能取到N的值,所以f一定是满射的,但是f((1,2))=f((2,1))=1*2=2*1,有两个不同的自变量可以取到相同的因变量所以不是单射

14年

  1. 化简(A∪(B\C)∩A)∪(A\(B∩C)∪(A∩B∩C))

A. A∪B

B. A∪C

C. A

D. B

解析:有2种方法:第一种采用逻辑推理,利用交并差等运算;第二种采用赋值法算出等式的值。

  1. 已知A△B={1,2,3},A△C={2,3,4},若2∈B,则

A、1∈C

B、2∈C

C、3∈C

D、4∈C

解析:对称差可以表示为A\B和B\A的并集,通俗点说就是AB的并集减去AB的交集;

A△B={1,2,3}表示AB的交集没有123

A△C={2,3,4}表示AC的交集没有234

如果2是B中的元素,则2一定不在A中,但是A△C中有2所以2一定是C的元素

  1. 设A,B为集合,使下列两式A\B=B\A和(A\B)∪B=(A∪B)\B成立的充要条件 是什么?

A、A⊆B

B、B⊆A

C、A=B

D、A=B=∅

解析:充要条件通常利用文氏图来看;

  1. 设A={1,2,3},则A上可以定义多少个自反且对称的二元关系?

A、8

B、27

C、64

D、512

解析:对于这种题可以采取画矩阵来判断

1

a12

a13

a21

1

a23

a31

a32

1

自反矩阵对角线上一定全为1,对称在矩阵中体现为aij=aji,那么只要看上三角就可以,下三角跟上三角匹配即可;上三角只有3个未定值,所以有2^3=8种。

  1. 若R={(1,4),(2,3),(3,1),(4,3)},则传递闭包R+(或t(R))中不包含哪个序对?

A、(1,1)

B、(1,2)

C、(1,3)

D、(1,4)

解析:传递闭包t(R)=R^0∪R∪R^2.......∪R^n

t(R)={(1,4),(2,3),(3,1),(2,1),(4,3),(1,3),(1,1)}

  1. 设V={a,b,c,d},则与V构成强连通图的边集是哪一个?

A、E1={(a,c),(b,a),(b,c),(d,a),(d,c)}

B、E2={(a,b),(a,c),(a,d),(b,d),(c,d)}

C、E3={(a,d),(b,a),(b,d),(b,c),(d,c)}

D、E4={(a,d),(b,a),(b,d),(c,b),(d,c)}

解析:强联通:有向图每个结点之间都有一条通路。

  1. 无向图G的边数q=16,3个4度顶点,4个3度顶点,其余顶点的度均小于3,则G中至少有多少个顶点?

A、15

B、14

C、11

D、10

解析:考察两个知识点:1、度数之和等于边数的两倍;2、边数=节点数-1;

度数之和=16*2=32=3*n4+4*n3+其他=24+其他;

当其余顶点度数为2时,此时顶点数最少为8\2+3+4=11

  1. 设d1,d2,…,dp为p个互不相同的正整数,则是否存在一个p阶的(简单)无向图G,使得G的各个顶点的度数序列恰好为d1,d2,…,dp?

A、存在

B、不存在

C、不确定

D、以上结论都不对

解析:假设p个数均小于等于p,由于互不相同,必然有一个整数=p;但是在无向图中p阶无向图的度数最大为p-1,所以一定不存在

  1. 15个学生,每个学生向其他学生中的3个学生各送一张贺年卡,则能否使得每个学生收到的卡均来自其送过卡的相同人?

A、能

B、不能

C、不确定

D、以上结论都不对

  1. 一个平面连通图有9个顶点,它们的度数分别为:2,2,2,3,3,3,4,4,5,则此图共有多少个面?

A. 5

B. 6

C. 7

D. 8

  1. 设A={1,2},则A上可以定义多少个等价关系和偏序关系?

A. 2,3

B. 2,4

C. 3,3

D. 3,2

解析:

等价关系满足自反,对称,传递;所以A上的等价关系只有2个:{(1,1),(2,2)},{(1,1),(1,2),(2,1),(2,2)}

偏序关系满足自反,反对称,传递;所以A上的偏序关系只有3个:{(1,1),(2,2)},{(1,1),(1,2),(2,2)},{(1,1),(2,1),(2,2)}

  1. 设R为实数集,映射f:R→R,g:R→R,且f(x)= 2x+1,g(x)=x/2,则f与g的合成映射是什么映射?

A、满射、不是单射

B、单射、不是满射

C、双射

D、不是满射、不是单射

解析:f是双射,g是双射,所以f·g也是双射

  1. 设有映射f:X→Y,A⊆X,令Ac是A对X的余集。当f分别是单射和满射时,给出f(Ac)和(f(A))c之间的关系。其中f(Ac)——用E表示;(f(A))c--用F表示。

A、F⊆E,E⊆F

B、F⊆E,E=F

C、E=F,F⊆E

D、E⊆F,F⊆E

解析:x∈A,f(x)=y,如果是单射,则f(a)!=f(b)<—>a!=b,但是Y没有被完全映射。EF;如果是满射,EF举例论证即可

14设无向树T有7片叶子,其余顶点的度数均为3,则满足此条件的非同构的无向树T的个数有多少?

A、2

B、3

C、4

D、5

15年

  1. 设A,B为集合,使下列两式A\B=∅和(A∪B)\B=(A\B)∪B同时成立的充要条件时什么?

A、 A⊆B

B、 B⊆A

C、A=B

D、A=B=∅

  1. 若映射f和g的合成g·f是双射,则下列论断哪个是正确的?

A、f和g都是双射

B、f是单射,g是满射

C、f是满射,g是单射

D、以上论断都不对

解析:合成的条件

  1. 设A={1,2,3},则A上可以定义多少个自反的二元关系?

A、16

B、32

C、64

D、128

解析:自反只需要二元关系矩阵对角线全是1即可,剩下6个位置共有2^6=64种可能

1

1

1

  1. 设A={1,2,3},则A上至多可以定义多少个等价关系?

A、4

B、5

C、6

D、7

解析:等价关系分组:

分成3组:{{1},{2},{3}}

分成2组:1、{{1,2},{3}}

2、{{1,3},{2}}

3、{{2,3},{1}}

分成1组:{{1,2,3}}

  1. 自然数集N是可数的,则N*N是否可数?N的幂集2^N是否可数?

A、可数,可数

B、可数,不可数

C、不可数,可数

D、不可数,不可数

解析:可数集,是指每个元素都能与自然数集N的每个元素之间能建立一一对应的集合。如果将可数集的每个元素标上与它对应的那个自然数记号,那么可数集的元素就可以按自然数的顺序排成一个无穷序列a1,a2,a3,…an,…。比如全体正偶数的集合是一个可数集,全体正奇数的集合也是可数集

  1. 设A,B,C为任意集合,则下列论断哪个是正确的?

A、若A∈B,B⊆C,则A⊆C

B、若A⊆B,B∈C,则A∈C

C、若A∈B,B⊆C,则A∈C

D、若A⊆B,B∈C,则A⊆C

解析:此题的重点在于区分元素和集合,对于{1,2,3}不一定就是集合,可能是某个集合的元素,集合中对于元素的判定更加的宽泛,因此一个集合也可能是元素。

A:若A∈B,则A是B的一个元素,B⊆C那么A∈C。所以A错误

B:若A⊆B,B∈C,B是C的一个元素,那么若C包含A,一定是C的元素。其次A是B的子集不代表A等于B,B是C的元素推不出A是C的元素。例如A={1},B={1,2},C={{1,2}};此时A不是C的元素。所以B错误

C:A是B中的元素,C包含B那么A一定就是C的元素。所以C正确

D同B

  1. 设d=(d1,d2,…,dn),其中di为非负整数,i=1,2,…,n。若存在n个顶点的(简单)无向图,使得顶点vi的度为di,则称d是可图解的。下面给出的各序列中哪个是可图解的?

A、(1,1,1,2,3)

B、(1,2,2,3,4,5)\\奇度顶点有3个错误

C、(1,3,3,3)\\有1度顶点错误

D、(1,3,3,4,5,6,6)\\有1度顶点错误

解析:1、奇度顶点有偶数个;2、度数之和等于边数的二倍;3、度数最大值为n-1;4、如果出现2个及以上的n-1度顶点则图中必然没有1度顶点;

  1. 再一次危机擂台赛中,双方各出n名选手。比赛的规则是双方各自排个次序,设甲方排定的次序为x1,x2,…,xn,乙方排定的次序为y1,y2,…,yn。x1与y1先比赛,胜的一位与输方的下一位选手比赛,直到一方全败,比赛结束。则最多进行多少场比赛可定胜负(假定比赛不出现平局)。

A、2n+1

B、2n

C、2n-1

D、2n-2

解析:如果要场数最多,可以让每个人比两场第一场胜第二场负,但是最后一个人只能胜或者负,这样的话就是2n-1场

  1. 若(简单)无向图G与其补图Gc同构,则称G为自补图,则含5个顶点不同构的无向自补图的个数为多少?

A、1

B、2

C、3

D、4

  1. 设树T中有2n个度为1的顶点,有3n个度为2的顶点,有n个度为3的顶点,则这棵树T有几个点点和几条边?

A、11,11

B、11,10

C、12,12

D、12,11

解析:2n+3n*2+3*n=(2n+3n+n-1)*2解得n=2

共有12个点,11条边

  1. 设Z是整数集合,映射f:Z→Z,f(x)=|x|-2x,则f应满足什么性质?

A、单射

B、满射

C、双射

D、以上答案都不对

解析:

当x>0,f(x)=-x;

当x<0,f(x)=-3x

由图象可知,f满足单射,但是f(x)!=1所以f不是满射

  1. 设A与B是两个任意集合,若{A∩B,B\A}是A∪B的一个划分,则A和B有何关系?

A、A\B=∅

B、B\A=∅

C、A=B=∅

D、以上答案都不对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值