算法题-力扣-674. 最长连续递增序列-简单

给定一个未排序的整数数组,找到最长且连续递增的子序列的长度。例如,在输入数组[1, 3, 5, 4, 7]中,最长连续递增子序列是[1, 3, 5],长度为3。算法通过遍历数组,比较相邻元素并更新最大子序列长度来实现。
摘要由CSDN通过智能技术生成

就是简单地遍历
时间复杂度是O(N)

描述:
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

0 <= nums.length <= 104
-109 <= nums[i] <= 109

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


代码:

/**
 * @param {number[]} nums
 * @return {number}
 */
var findLengthOfLCIS = function(nums) {
    let i = 0, max = 0
    if(nums.length == 0) return 0
    if(nums.length == 1) return 1

    for(let j = 1; j < nums.length;) {

        while(nums[j-1] < nums[j]) {
            j++
        }
        max = max > j-i ? max : j-i 
        if (max > nums.length - j + 1) return max
        if (nums[j] <= nums[j-1] && j < nums.length) {
            i=j
            j++
        }
        
    } 
    return max
};

在这里插入图片描述思路就是如果下一个数字比前一个数字大,那就把序列大小+1
如果不是,就将开始的位置更新为下一个数字的索引值,重新计数序列大小
每次计算出一个序列的大小就和结果比较一下
遍历到数组末尾就得出结果

注意,如果剩下的数字个数比结果现在的值还小,那就提前结束循环,返回结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值