就是简单地遍历
时间复杂度是O(N)
描述:
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。
提示:
0 <= nums.length <= 104
-109 <= nums[i] <= 109
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
代码:
/**
* @param {number[]} nums
* @return {number}
*/
var findLengthOfLCIS = function(nums) {
let i = 0, max = 0
if(nums.length == 0) return 0
if(nums.length == 1) return 1
for(let j = 1; j < nums.length;) {
while(nums[j-1] < nums[j]) {
j++
}
max = max > j-i ? max : j-i
if (max > nums.length - j + 1) return max
if (nums[j] <= nums[j-1] && j < nums.length) {
i=j
j++
}
}
return max
};
思路就是如果下一个数字比前一个数字大,那就把序列大小+1
如果不是,就将开始的位置更新为下一个数字的索引值,重新计数序列大小
每次计算出一个序列的大小就和结果比较一下
遍历到数组末尾就得出结果
注意,如果剩下的数字个数比结果现在的值还小,那就提前结束循环,返回结果