再说人行分数解读分的作用
征信报告里面其实有一个数字解读,这个数字解读是人民银行自己根据自己的数据和算法,提供给金融机构一个征信分的数字产品。
通过征信分,就可以快速的判断出来征信报告中所属的它的征信情况是什么样子的,它的分数范围是从0—1000分,分数越大,整体情况越好,违约情况可能越低。就像芝麻分,其逻辑也是一样,即分数越高,你的风险就低。
一.征信数字分怎么看?
征信中心他做这个评分分的目标是什么?目标是预测未来两年之内用户会不会发生90天以上的逾期。
如果它有可能会发生90天以上的逾期,未来两年我就认为它是一个坏客户。
在实际运用中,来看这两张图。如果这个用户的分是在400分以下的,那么这个用户未来的情况下,90%的概率会是一个坏客户,就未来两年内90%的情况下,它会逾期三个月。
征信评分大概在800分以上,可以看到其不良率来说,是一个比较接受的范围2.15%。即800分以上的,征信中心认为其是一个比较好的客户。
再每个分数段都有多少客群呢?再看一个图,10%~20%,首先10%并不是比如说是100份,它是从1分到619分专线中心这批,这批数据都是针对中医,认为是后10%的客户,后10%的客户。
每个分数区间中,可以拒绝掉多少坏客户?再开看一个数据:
根据统计,比如619分处,就差不读有60%的坏客户,这样拒绝掉619分的客户,就可以规避掉60%的坏客户,我就告诉你我不能贷款给你。
而如果放到了719分水平上的话说,你可以把80%的坏客户都拒之门外。根据实际的情况来说,根据实际的情况来说,我们用719分以下的过滤掉,就可以规避掉很大一部分的风险。所以这是征信中心出这套分的目的。
三.征信分所使用的数据维度有哪些?
征信分是如何出具,用到的维度又有哪一些?风控人员,如果想做自己的风控模型,也可以来参考一下这套征信分的逻辑。其实很多评分卡就是征信分。大体上的看到维度或者看的指标是相差不多的,或者说主要项目都是这些。
1.还款历史:
第一个最重要的还是还款历史,你的还款有没有出现过逾期。最重要的就是历史逾期,如果出现历史逾期基本上分不会很高。
2.负债情况
第二个就是当前负债,你现在已经借了多少钱了?已经借了几百万的房贷还是几十万的车贷还是?多少的消费贷。
3.申请贷款情况
第三个现在申请的次数,刚才之前说的查询量是不是很多,有没有可能多投的嫌疑。
4.信贷历史
包括最早开立的信贷产品的账龄;所有信贷产品的平均账龄,某特定类型产品的账龄。这类信息在总体的品谷各种占的比重矫情,存在历史记录,就可以总结经验,有信贷历史的人比纯保护的好。
4.信贷组合
第5个是信贷组合,包括:我们有哪些种类的信贷产品、这些产品的组合情况。这类信息在总体评估中的比重较轻。 征信中心的分刚才我说了也是一个非常简单有效的使用的一个指标,但是针对中心其实它的建议的使用方式并不是单独的使用,它其实是建议第二种方式采用另外的角度使用。
四.征信评分怎么使用?
风险评分和自己的信贷机构的内部的评分一起使形成一个评分矩阵。为什么需要做一个评分矩阵。我们总结了下,大概原因有以下内容:
1.角度不同,每套评分其实都有自己的考虑维度。既然这样问题的角度不一样,再加上数据源不一样,所以单独用一个评分卡就能解决问题就显得不现实。
2.金融机构的自身的产品都有自身提点。
比如征信中心也认为这个东西是高风险的,你们机构也认识风险较高,就直接拒绝。但如果存在争议,你们机构认为是低风险的,那么就可以核准中间有各种交叉的意义。具体的使用场景,包括评分卡的使用方式,各种使用场景,都可以根据自身的情况考虑。
作者简介:专注于风控知识与技能分享,微信公号【番茄风控大数据】,欢迎关注!