看DeepSeek如何破解传统风控的三大难题

2025年,大模型战场风云再起。当多数人还在讨论ChatGPT时,DeepSeek以黑马之势杀出重围——

凭借更低的算力成本、更高的金融数据理解力、更灵活的本地部署能力,它正在成为金融圈的“新宠”,目前连政企都争先接入相关的服务,现今的风口无疑是他,是他,就是他:
✅ 银行用它分析百万级财报,动态更新企业信用评分
✅ 头部机构用它搭建外呼机器人,还款提醒效率提升300%
✅ 零基础小白靠它3天开发出风险预测模型

但90%的金融人,仍被困在“知道却不会用”的困境中…

一、为什么金融人急需掌握DeepSeek?

  1. 传统风控的三大难题,DeepSeek一键破冰

传统金融三大难题:数据沼泽、人力黑洞、代码高墙

数据沼泽:财报、舆情、供应链数据杂乱无章?→ 解法:看我们如何利用DeepSeek自动抽取关键指标,生成动态信用评分卡;
人力黑洞:人工外呼耗时易错?→解法: DeepSeek+本地知识库,打造智能客服;
代码高墙:Python门槛劝退业务人员?→解法: DeepSeek辅助0代码基础的童鞋开发基础模型–线性回归等模型

  1. 抢先红利:金融垂直场景DeepSeek课

市场上大模型多如牛毛,但90%存在致命缺陷:
❌ 只有通用功能,不解决金融场景痛点
❌ 缺乏企业级部署实战(如Ollama+Dify架构)
❌ 代码实操断层,学完依旧不敢上手

而这是专为金融人设计“开箱即用”的AI解决方案

二、核心亮点:手把手教你用DeepSeek“改造”风控全流程

🔥 模块一:DeepSeek开发实战——从原理到投产

  1. AI大模型发展
    从机器学习到DeepSeek的“蒸馏学习”
    为什么金融场景必须用DeepSeek?(数据安全/成本优势/垂直优化)

  2. 动态信用评分革命
    案例演示:用企业财报+舆情数据训练DeepSeek,自动输出评分卡
    杀手级功能:DeepSeek X KiMi联动,5分钟生成带数据可视化的风控PPT

  3. 外呼机器人自主搭建(含本地部署)
    Step1:Ollama部署DeepSeek-7b模型+Dify架构搭建
    Step2:加载营销预测话术知识库,训练语义分析引擎
    Step3:实战测试——模拟客户还款场景对话优化

  4. 代码恐惧症终结者
    用DeepSeek辅助PyCharm开发:自动补全/纠错/注释生成
    零基础实战:30分钟开发“预审转化率分析”模型(附数据集)

🔥 模块二:DeepSeek金融信用风险实战——银行级解决方案

1.贷前准入智能升级
基于风控贷前准入,DeepSeek在相关的准入授信环境的风险优化赋能

  1. 基于交易流水识别的系统风险方案
    银行流水风险挖掘:DeepSeek识别异常交易模式(如高频小额转账)

三、师资团队:金融+AI的“双料王牌”
▶ Charley老师(AI实战派)
多年信贷风控数据与建模经验,主导开发场景化金融实际落地方案
独创“DeepSeek-Python联动作业流”,让业务人员也能玩转代码
▶ Leo老师(银行数字化老兵)
服务过工农中建等20+多头银行,经手超百个AI风控落地项目;
深度参与DeepSeek金融版训练,了解企业级系统部署方案

四、学习成果:AI工具用得好,升职加薪来得早
消金公司风控同学小明:用DeepSeek外呼机器人替代人工,逾期召回率提升42%
银行数据分析师:零代码开发财报分析模型,工作效率碾压同组Python程序员
助贷机构总监:基于课程方案搭建本地知识库,3个月节省外包成本70万

五、专属福利

*详细的部署实操指南(Ollama+Dify专属避坑安装指南),本次会跟大家详细介绍如何本地安装该大模型
*加入AI圈:与多位机构从业者共享实战经验,探讨学习相关大模型
*金融相关提示词库

番控学苑向来重视实操,也一直想指引大家在实操上走得更远,特别是此次有DeepSeek赋能,我们相信:
从来金融难题散,只把 DeepSeek 拿来盼!
我命由它不由天,秒变行业大拿范 !大拿范!

本次番控学苑给大家准备了翔实的AI实操内容,本次内容干货满满,相信大家学习后一定会有收获:

在这里插入图片描述

### DeepSeek 保险制解决方案 #### 集成多模态检索能力 DeepSeek 支持基于 RAG 技术的多模态检索,允许保险公司员工输入自然语言查询,如“企业流动资金占比异常”或“上下游履约险”,系统能够迅速定位并解析合同条款、财务报表中的异常流水记录,并提供具体的险点分析和建议[^1]。 #### 跨领域数据融合 通过跨领域场景融合技术,DeepSeek 可以实现“保险+医疗”的深度融合。例如,在健康险业务中,平台不仅限于事后理赔处理,更注重事前预防机制的设计与实施。这有助于降低赔付率,提高险管理水平[^2]。 #### 自动化流程优化 对于涉及大量重复性工作的保险风控环节,比如新单审核、续保评估等,DeepSeek 提供高效的自动化工具来加速这些过程。特别是针对常规的数据验证任务(CRUD),效率可提升达60%,显著减少人工干预需求,进而增强整体运营效益[^3]。 ```python def analyze_risk_profile(data): """ 使用预训练模型对投保人的险状况进行全面评估。 参数: data (dict): 包含被保险对象基本信息及其历史交易记录 返回: dict: 经过量化评分后的潜在险提示列表 """ risk_points = [] # 对传入的数据执行深度学习算法预测 predictions = model.predict([data]) for pred in predictions: if pred['risk_level'] >= threshold: risk_points.append({ 'description': pred['explanation'], 'suggestion': get_suggestions(pred) }) return {'risks': risk_points} ``` 此函数展示了如何利用机器学习模型自动识别高危因素并向用户提供改进建议的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值