手把手教会|绘制风控中常用的可视化图表

在日常办公时,数据可视化是一项比较重要的事情,图表传达的信息有时候会比数字更加直观,更加具有说服力。
在金融领域,各种产品在贷前、贷中、贷后等各个流程中都会产生大量的数据,这时就会涉及到各种各样的数据报表。在这些大量重复性的工作,大部分都可以用python实现自动化,这里介绍一个python的数据可视化工具——pyecharts。代码编写完成后,只需要一键运行,即可绘制出漂亮、美观的图表。节省时间,让你专注于数据的分析过程上。

Pyecharts简介
简单介绍一下pyecharts。Pyecharts是由百度开源的可视化工具echarts与python相结合,具有良好的交互性,丰富的图表接口,可以绘制出既好看又方便交互的图表,很适合用来自动化图表工作。

以下我们分别详细阐述涉及风控全流程的贷前、贷中、贷后相关报表。
一.贷前、贷中
这里介绍一下,在整个借贷业务流程中贷前、贷中较常见的几类图表(折线图、柱状图、饼图),并结合实际业务分析图表所表达的内容。
1.征信拒绝率折线图
某公司的借贷业务在不断地扩大,客户量在不断的增加,现在需要知道每个月客户在查征信环节,由于征信拒绝导致失败的占比情况。
计算方式:征信拒绝率=征信拒绝客户量/进入征信环节的客户数量
这里需要统计每个月的变化情况,所以选用折线图来描述,横轴为月份,纵轴为征信拒绝率。
代码如下:
在这里插入图片描述

运行结果如下:
在这里插入图片描述

从图中可以看出:随着业务的不断扩展,客户的征信拒绝率也在不断上升,同时,可以看出今年以来征信拒绝率的均值在4.46%。

2.放款数据柱状图
该公司的借贷业务主要分为:信用类和抵押类两种类型,抵押类的客户贷后表现较差,现需要查看今年来每个月不同贷款类型的放款情况。
这里通过分析应该选择柱形图来绘制,横轴为月份,纵轴为信用类和抵押类的放款金额数据。
代码如下:
…(详见星球完整版,本周打榜作业赛)

运行结果如下:
在这里插入图片描述

从图中可以看出:该公司信用类和抵押类放款金额都在逐月递增,抵押类业务增长的速度远高于信用类。抵押类业务的放款金额是信用类业务的放款金额2倍之多。

3.贷款利率饼图
客户的贷款利率会影响公司的收入,现在要分析一下客户的贷款利率区间分布情况。
代码如下:
…(详见星球完整版,本周打榜作业赛)
结果如下:
在这里插入图片描述

从图中可以看出,公司的主要贷款利率在15%-20%占比65%,20%以上的占比为10%。

二.贷后图表
还有一些数据指标可以用评估业务的健康状况,还可以通过这些指标展现出来的现象,分析业务中存在的问题。运用pyecharts绘制一些常见的贷后数据指标的图表,并通过图表展示出的内容,结合业务分析出业务中存在的风险点。
1.首逾率
第一期还款逾期的客户称为首逾客户,目的是为了发现可能存在的欺诈风险。
首逾率指标有两类:
1.第一期还款逾期的客户数量/第一期还款的总人数
2.第一期还款逾期客户的应还剩余金额/第一期总的应还剩余金额
这里以客户数量首逾率为例,分析每个月的首逾率变化情况。
代码如下:
…(详见星球完整版,本周打榜作业赛)
结果如下:
在这里插入图片描述

从图中可以看出:首逾率在逐月增加,最大首逾率为4%,整体的首逾率在3.07%。一般情况,首逾率较高,这是可以分析首逾的客户中是否存在集中欺诈的风险,是否有共同的特征,比如:居住地址是否较近,工作是否地点一致。如果存在集中欺诈的风险,这就需要在前端进行严控该地区客户。

2.迁移率图表
迁移率可以用来分析资产变化情况,能够形象的展示看客户贷款账户在整个生命周期的变化轨迹,也很低预测未来坏账损失的常用指标。
迁移率计算方法:(以M0-M1为例)
当月状态为M1的客户逾期金额(或者逾期客户数量)/上个月状态为M0的客户逾期金额(或者逾期客户数量)
M0:表示未逾期客户
M1:表示逾期一期客户
……
代码如下:
…(详见星球完整版,本周打榜作业赛)
结果如下:
在这里插入图片描述

从图中可以看出:截止2021-07月末,各阶段的迁移率变化较平稳,坏账的迁移率(M6-M7)大概为86.05%,这些都视为不良资产,将这些打包给催收公司,可以回收一部分不良资产,减少损失。

3.滚动率图表
滚动率分析就是从某个观察点将时间划分为两部分,观察点之前一段时期称为观察期,观察点之后的一段时间称为表现期,分析观察期客户的各状态(M0,M1,…)在表现期转为其他状态的占比,这种指标称为滚动率。
这里以时间点(2021-01)为节点,之前6个月的数据为观察期,之后6个月的数据为表现期,绘制出图像。
代码如下:
…(详见星球完整版,本周打榜作业赛)
结果如下:
在这里插入图片描述

从图中可以看到,M3转为M4+的比例位61%,M4+转为M4+的比例位82%,即M4+的回收率已经很低了,几乎不会降低为更好的状态,所以风控模型中将坏用户定义为逾期状态为M4+(逾期超过90天的客户)

4.Vintage图表
账龄分析可以看出放款的坏客户达到稳定比例所用的周期是多长时间,主要用途包括:
1、分析不同月份放款客户随时间的推移,达到稳定的时间长度。
2、分析某个指定的月份,受环境或者政策的影响,在每一个时期的变化情况。
这里制作M2客户的不同放款月份的Vintage逾期金额曲线,代码如下:
在这里插入图片描述
(详见星球完整版,本周打榜作业赛)
在这里插入图片描述

从图中可以看出:不同月份放款的M2+在经过18期后开始趋于稳定,说明账户成熟期是18个月。从2019-12到2021-07的账户之中逾期率都在降低,说明资产质量在不断上升,风控的水平在不断提升。

三.结果如下
本文介绍如何使用pyecharts绘制金融行业的各流程可视化图表,可以看出,图表展示出的内容可以很清楚的看到业务发展情况,以及业务中可能出现的风险点。
【本周的星球作业第二次打榜赛】欢迎各位童鞋结合本文内容,结合已经在星球中发放的实操数据集,逐一绘制中相关报表。本周将公布关于文章中所涉及的数据集跟代码,做到手把手地教会大家绘制风控中的全流程相关报表。
详情可移步至星球平台查收此份打榜作业:
在这里插入图片描述

~原创文章

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值