C#调用halcon实例演示

功能需求

        Winform模式下加载图片,自适应窗口并显示图片实际width、height。

效果展示

        

        很简单的一个小程序,点击加载图片,左侧hWindowControl1控件显示图片,右侧文本框显示图片实际宽和高的值。

        本文旨在记录和分享C#调用halcon函数的过程步骤,其他复杂的图像处理功能大家可自行开发。

过程步骤

1、添加引用

浏览,选择halcon安装目录下bin->dotnet35->halcondotnet.dll文件,默认路径应该是“C:\Program Files\MVTec\HALCON-18.11-Progress\bin\dotnet35\halcondotnet.dll”。

如果没有安装halcon软件,可以直接右键“引用”进入“管理NuGet程序包”,搜索halcondotnet进行下载安装。

2、工具栏添加halcon窗口组件

右键工具箱任意控件,选择“选择项”,在弹出的窗口继续选择浏览,再选择下载安装好的halcondotnet.dll文件,加载后会出现勾选的HWindowControl组件,这个就是我们用来载入图片的控件。

3、代码编写

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using HalconDotNet;

namespace WindowsFormsApp8
{
    public partial class Form1 : Form
    {

        HWindow window;
        HImage image;
        String imagePath = @"..\..\image\apple_1.png";


        public Form1()
        {
            InitializeComponent();
            window = hWindowControl1.HalconWindow;
            image = new HImage();
           
        }

        
        private void btn_loadimage_Click(object sender, EventArgs e)
        {
            image.ReadImage(imagePath);
            image.GetImageSize(out int width,out int height);
            window.SetPart(0,0,height,width);
            //image.DispObj(window);
            window.DispObj(image);
            tb_width.Text = width.ToString();
            tb_height.Text = height.ToString();

        }
    }
}

注意引用HalconDotNet命名空间;

功能代码大家自由发挥,如果会用Halcon HDevelop软件写halcon程序,那使用C#调用halcon函数肯定也是得心应手的,所以相比于其他的方式比如C#引用halcon导出.cs文件和C#调用halcon引擎,我是推荐直接调用函数这样一种方法的,这样也能加深我们对halcon函数的理解。

4、项目属性设置

生成栏中,将“目标平台”下的“首选32位”勾选取消。

别忘记这一步,否则程序会报错导致无法运行。

文末总结

本文只是打了一个样,halcon函数非常丰富,大家有兴趣可以多去研究,并在我这篇文章的基础上开发出各种复杂的图像处理程序。以后我有时间或者有能力,也会把自己的学习收获分享出来。

<think>好的,我现在需要回答用户关于如何在HALCON中导出训练好的模型的问题。首先,我需要回忆一下HALCON的文档和相关引用内容。用户提供了几个引用,其中引用[4]提到了HALCON的深度学习模型训练流程,包括导出标注信息文件.hdict,但并没有直接说明如何导出模型。不过,根据一般的深度学习框架流程,导出模型通常涉及保存训练好的权重或整个模型结构。 首先,HALCON可能使用特定的函数来保存模型。例如,在训练完成后,可能有一个类似于`write_dl_model`的函数。我需要确认是否存在这样的函数。根据HALCON的惯例,导出模型可能支持多种格式,比如ONNX或HALCON自定义格式。此外,用户可能需要将模型用于不同的环境,比如部署到其他平台,因此导出为通用格式如ONNX会比较重要。 接下来,引用[4]中提到使用预训练模型(backbone),这可能意味着在训练完成后,模型的结构和权重需要被保存下来。HALCON的模型导出步骤可能包括保存为.hdlm文件,这是HALCON Deep Learning Model的缩写。此外,用户可能需要调整模型的版本兼容性,或者导出中间格式以便后续使用。 另外,用户可能需要通过代码示例来了解具体操作步骤。例如,在训练脚本中,添加保存模型的命令。可能的代码结构是使用`write_dl_model`函数,传入模型句柄和文件路径。同时,导出为ONNX格式可能需要额外的参数设置,比如设置导出格式为'onnx'。 还需要考虑模型导出的应用场景,比如目标检测或分类,不同任务可能需要不同的处理。引用[4]中提到的目标检测项目,可能涉及到模型配置的保存,比如轴平行矩阵或自由矩阵的参数。 最后,生成相关问题,可能需要围绕模型导出的后续步骤、使用导出的模型进行预测、兼容性处理等。</think>在HALCON中导出训练完成的深度学习模型,主要通过`write_dl_model`函数实现。以下是具体步骤和文件格式说明: ### 1. 导出模型文件格式 - **HALCON原生格式**:默认导出为`.hdlm`文件(HALCON Deep Learning Model),包含完整的模型结构和权重[^4]。 - **ONNX格式**:支持导出为标准化格式`.onnx`,便于跨平台部署(需HALCON 21.05及以上版本)。 ### 2. 导出方法 #### 步骤1:训练完成后保存模型 ```python * 假设已通过代码完成模型训练 * 获取训练好的模型句柄 read_dl_model ('pretrained.hdlm', DLModelHandle) * 导出为HALCON格式 write_dl_model (DLModelHandle, 'my_model.hdlm') * 导出为ONNX格式(需指定格式参数) set_dl_model_param (DLModelHandle, 'export_batch_size', 1) write_dl_model (DLModelHandle, 'my_model.onnx', 'onnx') ``` #### 步骤2:检查导出内容 - `.hdlm`文件包含: - 网络架构(如ResNet、MobileNet等) - 权重参数 - 预处理配置(归一化参数、输入图像尺寸等) - 后处理配置(目标检测的锚框参数等) ### 3. 关键注意事项 1. **版本兼容性**:导出的`.hdlm`文件需与HALCON运行时版本匹配,否则需使用`set_system('reload_old_dl_model','true')`兼容模式。 2. **输入输出配置**:通过`get_dl_model_param`检查输入层名称和尺寸,确保部署时数据预处理一致。 3. **精简模型**:使用`optimize_dl_model`减少模型体积后再导出。 ### 4. 应用场景示例 导出的模型可用于: - HALCON脚本内预测:`apply_dl_model` - C++/C#集成:通过HALCON/.NET接口调用 - 边缘设备部署:ONNX格式模型可转换至TensorRT等推理引擎 ```python * 模型加载示例 read_dl_model ('my_model.hdlm', DLModelHandle) create_dl_samples_from_images (Image, DLDataSet) apply_dl_model (DLModelHandle, DLDataSet, 'all', 'box_labels', DLResult) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花飞花落花满楼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值