(十五)从零开始学人工智能-深度学习基础2

一、循环神经网络基础

​ 在前面的文章中,介绍了全连接神经网络(DNN)和卷积神经网络(CNN),以及它们的训练和使用。回忆一下,它们都是能单独的处理一个个的输入,前一个输入和后一个输入是完全没有关系的。然后,现实当中是,某些任务需要能够更好的处理序列性质的信息,即前面的输入和后面的输入是有关系的。例如,当我们理解一句话意思时,孤立的理解这句话的每个词都是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频时,也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,使用我们前文介绍的DNN和CNN是不够的,而需要用到深度学习领域中另一类非常重要的神经网络:循环神经网络(Recurrent Neural Network, RNN)。RNN种类繁多,过程繁琐,本部分首先对其结构进行剥茧抽丝,以理解RNNs及其训练算法;进一步地,介绍两中常见的RNN类型:长短时记忆网络(Long Short-Term Memory Network,LSTM),门控循环单元(Gated Recurrent Unit, GRU)。

1.1 从语言模型开始

为什么要从语言模型开始呢?因为,RNN是在自然语言处理领域中最先被用起来的,例如,RNN可以构建语言模型。那什么是语言模型呢?

我们可以让电脑做这样一个练习:写出一个句子前面的一些词,然后,让电脑帮我们写出接下来的一个词。比如下面这句话:

我昨天上学迟到了,老师批评了____。

在这个句子中,接下来的词最有可能的是“我”,而不是“小明”,更不会是“吃饭”。

在这个例子中,语言模型是这样的一个东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。

语言模型是对一种语言的特征进行建模,它有很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最有可能的。当然,它同样也可以用在图像到文本的识别中国(OCR)。

在使用RNN之前,语言模型主要采用N-Gram算法。N是一个自然数,比如2或者3.它的含义是:假设一个词出现的概率只与前面N个词相关。我们以2-Gram为例,对这句话给出部分进行分词:

我|昨天|上学|迟到|了|,|老师|批评|了|____。

如果用2-Gram进行建模,那么电脑在预测的时候,只会看到前面的“了”,然后,电脑会在语料库中,搜索“了”后面最有可能的一个词。不管最后电脑选择的是不是“我”,显然这个模型是不靠谱的,因为“了”前面说了那么一大推实际上是没有用到的。如果使用3-Gram模型呢,会搜索“批评了”后面最有可能的词,感觉比2-Gram靠谱了不少,但还是远远不够的。因为这句话最关键的信息“我”,远在9个词之前。

看到这儿,大家可能会想,可以继续提升N的值呀,比如4-Gram、5-Gram、 … \dots 。实际上,大家再深入想一下就会发现,这个想法是没有实用性的,因为当我们想处理任意长度的句子时,N设为多少都是不合适的;另外,模型的大小和N的关系是指数级的,4-Gram模型就会占用海量的存储空间。

所以,就该轮到RNN出场了,RNN理论上可以往前看(或往后看)任意多个词。

1.2 什么是循环神经网络?

循环神经网络种类繁多,我们先从最简单的基础循环神经网络开始吧~

1.2.1 基本循环神经网络

下图是一个简单的循环神经网络,它由输入层、一个隐藏层和一个输出层组成:

循环神经网络的实在是太难画出来了,网上所有大神们都不得不用了这种抽象的手法。不过,仔细看的话,如果把上面有 W W W的那个带箭头的圈去掉,它就变成了最普通的全连接网络了。 x x x是一个向量,它表示输入层的值(这里没有画出来表示输入层神经元节点的圆圈), s s s是一个向量,它表示隐藏层的值(这里隐藏层画了一个节点,你也可以想象这一层其实是多个节点,节点数目与向量 s s s的维度相同); U U U是输入层到隐藏层的权重矩阵; O O O也是一个向量,它表示输出层的值; V V V是隐藏层到输出层的权重矩阵。那么,现在我们来看看 W W W是什么,循环神经网络的隐藏层的值 s s s不仅仅取决于当前这次输入 x x x,还取决于上一次隐藏层的值 s s s。权重矩阵 W W W就是隐藏层上一次的值作为这一次的输入的权重。

如果我们把上面的图展开,循环神经网络的也可以画成下面的样子:

在这里插入图片描述

现在看上去就比较清晰了,这个网络在 t t t时刻接收到输入 x t x_t xt之后,隐藏层的值是 s t s_t st,输出值是 o t o_t ot。关键一点是, s t s_t st的值不仅仅取决于 x t x_t xt,还取决于 s t − 1 s_{t-1} st1。我们可以用下面的公式来表示循环神经网络的计算方法:

o t = g ( V s t ) (1) o_t=g(Vs_t) \tag{1} ot=g(Vst)(1)

s t = f ( U x t + W s t − 1 ) (2) s_t = f(Ux_t+Ws_{t-1}) \tag{2} st=f(Uxt+Wst1)(2)

式1是输出层的计算公式,输出层是全连接层,也就是它的节点都是和隐藏层的每个节点相连。 V V V是一个输出层的权重矩阵, g g g是激活函数。式2是隐藏层的计算公式,它是循环层。 U U U是输入 x x x的权重矩阵, W W W是上一次输出值 s t − 1 s_{t-1} st1作为这一次输入的权重矩阵, f f f是激活函数。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W W W

如果反复把式2带入到式1,我们可以得到:

o t = g ( V s t ) = V f ( U x 1 + W s t − 1 ) = V f ( U x t + W f ( U x t − 1 + W s t − 2 ) ) = V f ( U x t + W f ( U x t − 1 + W f ( U x t − 2 + W s t − 3 ) ) ) = V f ( U x t + W f ( U x t − 1 + W f ( U x t − 2 + W f ( U x t − 3 + …   ) ) ) ) \begin{aligned}o_t &=g(Vs_t) \\ &=Vf(Ux_1+Ws_{t-1})\\ &=Vf(Ux_t+Wf(Ux_{t-1}+Ws_{t-2}))\\&=Vf(Ux_t+Wf(Ux_{t-1}+Wf(Ux_{t-2}+Ws_{t-3})))\\ &=Vf(Ux_t+Wf(Ux_{t-1}+Wf(Ux_{t-2}+Wf(Ux_{t-3}+\dots)))) \end{aligned} ot=g(Vst)=Vf(Ux1+Wst1)=Vf(Uxt+Wf(Uxt1+Wst2))=Vf(Uxt+Wf(Uxt1+Wf(Uxt2+Wst3)))=Vf(Uxt+Wf(Uxt1+Wf(Uxt2+Wf(Uxt3+))))

从上面可以看出,循环神经网络的输出值 o t o_t ot,是受前面历次输入值 X t X_t Xt X t − 1 X_{t-1} Xt1 X t − 2 X_{t-2} Xt2 … \dots 影响的,这也是为什么循环神经网络可以往前看任意多个输入值的原因。

1.2.2 双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,比如下面这句话:

我的手机坏了,我打算____一部新手机。

可以想象的是,如果我们只看到横线前面的词,手机坏了,那么我是打算修一修?换一部新的手机?还是哭哭?这些都是无法确定的。但是如果我们还看到横线后面的词是“一部新手机”,那么,横线上的词填“买”的概率就大得多了。

在上一节中的基本循环神经网络是无法对此进行建模的,因此,我们需要双向循环神经网络,如下图所示:

在这里插入图片描述

当遇到这种从未来穿越回来的场景时,难免处于懵逼的状态。不过我们还是可以用屡试不爽的老办法:先分析一个特殊场景,然后再总结一般的规律。我们先考虑上图中, y 2 y_2 y2的计算。

从上图可以看出,双向循环神经网络的隐藏层要保存两个值,一个 A A A参与正向计算,另一个值 A ′ A' A参与计算。最终的输出值 y 2 y_2 y2取决于 A 2 A_2 A2 A 2 ′ A_2' A2。其计算方法为:

y 2 = g ( V A 2 + V ′ A 2 ′ ) y_2=g(VA_2+V'A_2') y2=g(VA2+VA2)

其中 A 2 A_2 A2 A 2 ′ A_2' A2的计算为:

A 2 = f ( W A 1 + U X 2 ) A_2=f(WA_1+UX_2) A2=f(WA1+UX2)

A 2 ′ = f ( W ′ A 3 ′ + U ′ X 2 ) A_2'=f(W'A_3'+U'X_2) A2=f(WA3+UX2)

至此,我们已经可以看出一般的规律:正向计算时,隐藏层的值 S t S_t St S t − 1 S_{t-1} St1有关;反向计算时,隐藏层的值 S t ′ S_t' St S t + 1 ′ S_{t+1}' St+1有关;最终的输出取决于正向和反向计算的加和。现在,我们仿照式1和式2,写出双向循环神经网络的计算方法:

O t = g ( V S t + V ′ S t ′ ) O_t=g(VS_t+V'S_t') Ot=g(VSt+VSt)

S t = f ( U X t + W S t − 1 ) S_t=f(UX_t+WS_{t-1}) St=f(UXt+WSt1)

S t ′ = f ( U ′ X t + W ′ S t + 1 ′ ) S_t'=f(U'X_t+W'S_{t+1}') St=f(UXt+WSt+1)

从上面的三个公式可以看到,正向计算和反向计算不共享权重,也就是说 U U U U ′ U' U W W W W ′ W' W V V V V ′ V' V都是不同的权重矩阵。

1.2.3 深度循环神经网络

前面我们介绍的循环神经网络只有一个隐藏层,当然了,也可以堆叠两个以上的隐藏层,这样就得到了深度循环神经网络。如下图所示:

在这里插入图片描述

我们把第 i i i个隐藏层的值表示为 S t ( i ) S_t^{(i)} St(i) S t ′ ( i ) S_t'^{(i)} St(i),则深度循环神经网络的计算方式可以表示为:

O t = g ( V ( i ) S t ( i ) + V ′ ( i ) S t ′ ( i ) ) O_t=g(V^{(i)}S_t^{(i)}+V'^{(i)}S_t'^{(i)}) Ot=g(V(i)St(i)+V(i)St(i))

S t ( i ) = f ( U ( i ) S t i − 1 + W ( i ) S t − 1 ) S_t^{(i)}=f(U^{(i)}S_t^{i-1}+W^{(i)}S_{t-1}) St(i)=f(U(i)Sti1+W(i)St1)

S t ′ ( i ) = f ( U ′ ( i ) S t ′ ( i − 1 ) + W ′ ( i ) S t + 1 ′ ) S_t'^{(i)}=f(U'^{(i)}S_t'^{(i-1)}+W'^{(i)}S_{t+1}') St(i)=f(U(i)St(i1)+W(i)St+1)

⋯ \cdots

S t ( 1 ) = f ( U ( 1 ) X t + W ( 1 ) S t − 1 ) S_t^{(1)}=f(U^{(1)}X_t+W^{(1)}S_{t-1}) St(1)=f(U(1)Xt+W(1)St1)

S t ′ ( 1 ) = f ( U ′ ( 1 ) X t + W ′ ( 1 ) S t + 1 ′ ) S_t'^{(1)}=f(U'^{(1)}X_t+W'^{(1)}S_{t+1}') St(1)=f(U(1)Xt+W(1)St+1)

1.3 循环神经网络的训练

1.3.1 循环神经网络的训练算法:BPTT

B P T T BPTT BPTT算法是针对循环层的训练算法,它的基本原理和 B P BP BP算法是一样的,也包含同样的三个步骤:

  1. 前向计算每个神经元的输出值;

  2. 反向计算每个神经元的**误差项 δ j \delta_j δj**值,它是误差函数 E E E对神经元 j j j的加权输入 n e t j net_j netj的偏导数;

  3. 计算每个权重的梯度。

    循环层如下图所示:

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a8kYlBqb-1583227061275)(./img2/5.png)]

最后再用随机梯度下降算法更新权重。

前向计算

使用前面的式2对循环层进行前向计算:

S t = f ( U X t + W S t − 1 ) S_t=f(UX_t+WS_{t-1}) St=f(UXt+WSt1)

注意:上面的 S t S_t St X t X_t Xt S t − 1 S_{t-1} St1都是向量,用黑体字母表示(在这里都用大写替代表示了😂,将就看吧❤️);而 U U U V V V是矩阵,用大写字母表示。向量的下标表示时刻,例如, S t S_t St表示在 t t t时刻向量 S S S的值。

我们假设输入向量 X X X的维度是 m m m,输出向量 S S S的维度是 n n n,则矩阵 U U U的维度是 n n n x m m m,矩阵 W W W的维度是 n n n x n n n。下面是我们上式展开成矩阵的样子,看起来更直观一些:

[ s 1 t s 2 t ⋮ s n t ] = f ( [ u 11 u 12 ⋯ u 1 m u 21 u 22 ⋯ u 2 m ⋮ ⋮ ⋱ ⋮ u n 1 u n 2 ⋯ u n m ] [ x 1 x 2 ⋮ x m ] + [ w 11 w 12 ⋯ w 1 n w 21 w 22 ⋯ w 2 n ⋮ ⋮ ⋱ ⋮ w n 1 w n 2 ⋯ w n m ] [ s 1 t − 1 s 2 t − 1 ⋮ s n t − 1 ] ) \left[ \begin{matrix} s_1^t \\ s_2^t \\ \vdots \\ s_n^t \end{matrix} \right]=f(\left[ \begin{matrix} u_{11} & u_{12} & \cdots & u_{1m}\\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n1} & u_{n2} & \cdots & u_{nm} \end{matrix} \right]\left[ \begin{matrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{matrix} \right]+\left[ \begin{matrix} w_{11} & w_{12} & \cdots & w_{1n}\\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{matrix} \right]\left[ \begin{matrix} s_1^{t-1} \\ s_2^{t-1} \\ \vdots \\ s_n^{t-1} \end{matrix} \right]) s1ts2tsnt=f(u11u21un1u12u22un2u1mu2munmx1x2xm+w11w21wn1w12w22wn2w1nw2nwnms1t1s2t1snt1)

上式中,手写体字母表示向量的一个元素,它的下标表示它是这个向量的第几个元素,它的上标表示第几个时刻。例如, s j t s_j^t sjt表示向量 S S S的第 j j j个元素在 t t t时刻的值; u j i u_{ji} uji表示输入层第 i i i个神经元到循环层第 j j j个神经元的权重; w j i w_{ji} wji表示循环层第 t − 1 t-1 t1时刻的第 i i i个神经元到循环层第 t t t个时刻的第 j j j个神经元的权重。

误差项的计算

B T P P BTPP BTPP算法将第 l l l t t t时刻的**误差项 δ t l \delta_t^l δtl**值沿两个方向传播,一个方向是其传递到上一层网络,得到 δ t l − 1 \delta_t^{l-1} δtl1,这一部分只和权重矩阵 U U U相关;另一个方向是将其沿时间线传递到初始时刻 t 1 t_1 t1,得到 δ 1 l \delta_1^l δ1l,这部分只和权重矩阵 W W W相关。

我们用向量 n e t t net_t nett表示神经元在 t t t时刻的加权输入,得到:

n e t t = U X t + W S t − 1 net_t=UX_t+WS_{t-1} nett=UXt+WSt1

S t − 1 = f ( n e t t − 1 ) S_{t-1}=f(net_{t-1}) St1=f(nett1)

因此:

∂ n e t t ∂ n e t t − 1 = ∂ n e t t ∂ S t − 1 ∂ S t − 1 ∂ n e t t − 1 \frac{\partial net_t}{\partial net_{t-1}}=\frac{\partial net_t}{\partial S_{t-1}}\frac{\partial S_{t-1}}{\partial net_{t-1}} nett1nett=St1nettnett1St1

约定:我们使用 a a a表示列向量,用 a T a^T aT表示行向量。

上式第一项是向量函数对向量求导,其结果为 J a c o b i a n Jacobian Jacobian矩阵:

∂ n e t t ∂ S t − 1 = [ ∂ n e t 1 t ∂ S 1 t − 1 ∂ n e t 1 t ∂ S 2 t − 1 ⋯ ∂ n e t 1 t ∂ S n t − 1 ∂ n e t 2 t ∂ S 1 t − 1 ∂ n e t 2 t ∂ S 2 t − 1 ⋯ ∂ n e t 2 t ∂ S n t − 1 ⋮ ⋮ ⋱ ⋮ ∂ n e t n t ∂ S 1 t − 1 ∂ n e t n t ∂ S 2 t − 1 ⋯ ∂ n e t n t ∂ S n t − 1 ] = [ w 11 w 12 ⋯ w 1 n w 21 w 22 ⋯ w 2 n ⋮ ⋮ ⋱ ⋮ w n 1 w n 2 ⋯ w n m ] = W \begin{aligned}\frac{\partial net_t}{\partial S_{t-1}} &=\left[ \begin{matrix} \frac{\partial net_1^t}{\partial S_1^{t-1}} & \frac{\partial net_1^t}{\partial S_2^{t-1}} & \cdots & \frac{\partial net_1^t}{\partial S_n^{t-1}} \\ \frac{\partial net_2^t}{\partial S_1^{t-1}} & \frac{\partial net_2^t}{\partial S_2^{t-1}} & \cdots & \frac{\partial net_2^t}{\partial S_n^{t-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial net_n^t}{\partial S_1^{t-1}} & \frac{\partial net_n^t}{\partial S_2^{t-1}} & \cdots & \frac{\partial net_n^t}{\partial S_n^{t-1}} \end{matrix} \right] \\ &=\left[ \begin{matrix} w_{11} & w_{12} & \cdots & w_{1n}\\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{matrix} \right]\\ &=W \end{aligned} St1nett=S1t1net1tS1t1net2tS1t1netntS2t1net1tS2t1net2tS2t1netntSnt1net1tSnt1net2tSnt1netnt=w11w21wn1w12w22wn2w1nw2nwnm=W

同理,上式第二项也是一个 J a c o b i a n Jacobian Jacobian矩阵:

∂ S t − 1 ∂ n e t t − 1 = [ ∂ S 1 t − 1 ∂ n e t 1 t − 1 ∂ S 1 t − 1 ∂ n e t 2 t − 1 ⋯ ∂ S 1 t − 1 ∂ n e t n t − 1 ∂ S 2 t − 1 ∂ n e t 1 t − 1 ∂ S 2 t − 1 ∂ n e t 2 t − 1 ⋯ ∂ S 2 t − 1 ∂ n e t n t − 1 ⋮ ⋮ ⋱ ⋮ ∂ S n t − 1 ∂ n e t 1 t − 1 ∂ S n t − 1 ∂ n e t 2 t − 1 ⋯ ∂ S n t − 1 ∂ n e t n t − 1 ] = [ f ′ ( n e t 1 t − 1 ) 0 ⋯ 0 0 f ′ ( n e t 2 t − 1 ) ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ f ′ ( n e t n t − 1 ) ] = d i a g [ f ′ ( n e t t − 1 ) ] \begin{aligned}\frac{\partial S_{t-1}}{\partial net_{t-1}} &=\left[ \begin{matrix} \frac{\partial S_1^{t-1}}{\partial net_1^{t-1}} & \frac{\partial S_1^{t-1}}{\partial net_2^{t-1}} & \cdots & \frac{\partial S_1^{t-1}}{\partial net_n^{t-1}} \\ \frac{\partial S_2^{t-1}}{\partial net_1^{t-1}} & \frac{\partial S_2^{t-1}}{\partial net_2^{t-1}} & \cdots & \frac{\partial S_2^{t-1}}{\partial net_n^{t-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial S_n^{t-1}}{\partial net_1^{t-1}} & \frac{\partial S_n^{t-1}}{\partial net_2^{t-1}} & \cdots & \frac{\partial S_n^{t-1}}{\partial net_n^{t-1}} \end{matrix} \right] \\ &=\left[ \begin{matrix} f'(net_1^{t-1}) & 0 & \cdots & 0 \\ 0 & f'(net_2^{t-1}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f'(net_n^{t-1}) \end{matrix} \right]\\ &=diag[f'(net_{t-1})] \end{aligned} nett1St1=net1t1S1t1net1t1S2t1net1t1Snt1net2t1S1t1net2t1S2t1net2t1Snt1netnt1S1t1netnt1S2t1netnt1Snt1=f(net1t1)000f(net2t1)000f(netnt1)=diag[f(nett1)]

d i a g [ a ] diag[a] diag[a]表示根据向量 a a a创建一个对角矩阵,即

d i a g ( a ) = [ a 1 0 ⋯ 0 0 a 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n ] \begin{aligned}diag(a) &=\left[ \begin{matrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{matrix} \right] \end{aligned} diag(a)=a1000a2000an

最后,将两项合在一起,得到:

∂ n e t t ∂ n e t t − 1 = ∂ n e t t ∂ S t − 1 ∂ S t − 1 ∂ n e t t − 1 = W d i a g [ f ′ ( n e t t − 1 ) ] = [ w 11 f ′ ( n e t 1 t − 1 ) w 12 f ′ ( n e t 2 t − 1 ) ⋯ w 1 n f ′ ( n e t n t − 1 ) w 21 f ′ ( n e t 1 t − 1 ) w 22 f ′ ( n e t 2 t − 1 ) ⋯ w 2 n f ′ ( n e t n t − 1 ) ⋮ ⋮ ⋱ ⋮ w n 1 f ′ ( n e t 1 t − 1 ) w n 2 f ′ ( n e t 2 t − 1 ) ⋯ w n m f ′ ( n e t n t − 1 ) ] \begin{aligned}\frac{\partial net_t}{\partial net_{t-1}} &=\frac{\partial net_t}{\partial S_{t-1}}\frac{\partial S_{t-1}}{\partial net_{t-1}} \\ &=Wdiag[f'(net_{t-1})] \\ &=\left[ \begin{matrix} w_{11}f'(net_1^{t-1}) & w_{12}f'(net_2^{t-1}) & \cdots & w_{1n}f'(net_n^{t-1})\\ w_{21}f'(net_1^{t-1}) & w_{22}f'(net_2^{t-1}) & \cdots & w_{2n}f'(net_n^{t-1}) \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1}f'(net_1^{t-1}) & w_{n2}f'(net_2^{t-1}) & \cdots & w_{nm}f'(net_n^{t-1}) \end{matrix} \right] \end{aligned} nett1nett=St1nettnett1St1=Wdiag[f(nett1)]=w11f(net1t1)w21f(net1t1)wn1f(net1t1)w12f(net2t1)w22f(net2t1)wn2f(net2t1)w1nf(netnt1)w2nf(netnt1)wnmf(netnt1)

上式描述了将 δ \delta δ沿着时间往前传递一个时刻的规律,有了这个规律,我们就可以求得任意时刻 k k k的误差项 δ k \delta_k δk

δ k T = ∂ E ∂ n e t k = ∂ E ∂ n e t t ∂ n e t t ∂ n e t k = ∂ E ∂ n e t t ∂ n e t t ∂ n e t t − 1 ∂ n e t t − 1 ∂ n e t t − 2 ⋯ ∂ n e t k + 1 ∂ n e t k = W d i a g [ f ′ ( n e t t − 1 ) ] W d i a g [ f ′ ( n e t t − 2 ) ] ⋯ W d i a g [ f ′ ( n e t k ) ] δ t l = δ t T ∏ i = k t − 1 W d i a g [ f ′ ( n e t i ) ] (3) \begin{aligned}\delta_k^T &=\frac{\partial E}{\partial net_k} \\ &=\frac{\partial E}{\partial net_t}\frac{\partial net_t}{\partial net_k} \\ &=\frac{\partial E}{\partial net_t}\frac{\partial net_t}{\partial net_{t-1}}\frac{\partial net_{t-1}}{\partial net_{t-2}} \cdots \frac{\partial net_{k+1}}{\partial net_k} \\ &=Wdiag[f'(net_{t-1})]Wdiag[f'(net_{t-2})] \cdots Wdiag[f'(net_k)]\delta_t^l \\ &=\delta_t^T\prod_{i=k}^{t-1}Wdiag[f'(net_i)] \end{aligned} \tag{3} δkT=netkE=nettEnetknett=nettEnett1nettnett2nett1netknetk+1=Wdiag[f(nett1)]Wdiag[f(nett2)]Wdiag[f(netk)]δtl=δtTi=kt1Wdiag[f(neti)](3)

上式就是将误差沿时间反向传播的算法。

误差项传递到上一层

循环层将误差项反向传播到上一层网络,与普通的全连接是完全一样的,这在全面的文章中已经详细介绍过,此处仅简要介绍:

循环层的加权输入 n e t l net^l netl与上一层的加权输入 n e t l − 1 net^{l-1} netl1关系如下:

n e t t l = U a t l − 1 + W S t − 1 net_t^l=Ua_t^{l-1}+WS_{t-1} nettl=Uatl1+WSt1

a t l − 1 = f l − 1 ( n e t t l − 1 ) a_t^{l-1}=f^{l-1}(net_t^{l-1}) atl1=fl1(nettl1)

上式中的 n e t t l net_t^l nettl是第 l l l层神经元的加权输入(假设第 l l l 层是循环层); n e t t l − 1 net_t^{l-1} nettl1是第 l − 1 l-1 l1层神经元的加权输入; a t l − 1 a_t^{l-1} atl1是第 l − 1 l-1 l1层神经元的输出; f l − 1 f^{l-1} fl1是第 l − 1 l-1 l1层的激活函数。

∂ n e t t l ∂ n e t t l − 1 = ∂ n e t l ∂ a t l − 1 ∂ a t l − 1 ∂ n e t t l − 1 = U d i a g [ f ′ l − 1 ( n e t t l − 1 ) ] \begin{aligned}\frac{\partial net_t^l}{\partial net_t^{l-1}} &=\frac{\partial net^l}{\partial a_t^{l-1}}\frac{\partial a_t^{l-1}}{\partial net_t^{l-1}} \\ &=Udiag[f'^{l-1}(net_t^{l-1})] \end{aligned} nettl1nettl=atl1netlnettl1atl1=Udiag[fl1(nettl1)]

进一步地,

( δ t l − 1 ) T = ∂ E ∂ n e t t l − 1 = ∂ E ∂ n e t t l ∂ n e t t l ∂ n e t t l − 1 = ( δ t l ) T U d i a g [ f ′ l − 1 ( n e t t l − 1 ) ] \begin{aligned}(\delta_t^{l-1})^T &=\frac{\partial E}{\partial net_t^{l-1}} \\ &=\frac{\partial E}{\partial net_t^l}\frac{\partial net_t^l}{\partial net_t^{l-1}} \\ &=(\delta_t^l)^TUdiag[f'^{l-1}(net_t^{l-1})] \end{aligned} (δtl1)T=nettl1E=nettlEnettl1nettl=(δtl)TUdiag[fl1(nettl1)]

该式即为将误差传递到上一层的算法。

权重梯度的计算

现在,终于来到了 B P T T BPTT BPTT算法的最后一步:计算每个权重的梯度。

首先,我们计算误差函数 E E E对权重矩阵 W W W的梯度 ∂ E ∂ W \frac{\partial E}{\partial W} WE

在这里插入图片描述

上图展示了我们到目前为止,在前面两步计算得到的量,包括每个时刻 t t t的循环输出值 S t S_t St,以及误差项 δ t \delta_t δt

回忆一下全连接网络的权重梯度计算算法:只要知道了任意一个时刻的误差项 δ t \delta_t δt,以及上一个时刻循环层的输出值 S t − 1 S_{t-1} St1,就可以按照下面的公式求出权重矩阵在 t t t时刻的梯度 ∇ W t E \nabla_{W_t}E WtE

∇ W t E = [ δ 1 t s 1 t − 1 δ 1 t s 2 t − 1 ⋯ δ 1 t s n t − 1 δ 2 t s 1 t − 1 δ 2 t s 2 t − 1 ⋯ δ 2 t s n t − 1 ⋮ ⋮ ⋱ ⋮ δ n t s 1 t − 1 δ n t s 2 t − 1 ⋯ δ n t s n t − 1 ] (4) \begin{aligned}\nabla_{W_t}E &=\left[ \begin{matrix} \delta_1^ts_1^{t-1} & \delta_1^ts_2^{t-1} & \cdots & \delta_1^ts_n^{t-1} \\ \delta_2^ts_1^{t-1} & \delta_2^ts_2^{t-1} & \cdots & \delta_2^ts_n^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_n^ts_1^{t-1} & \delta_n^ts_2^{t-1} & \cdots & \delta_n^ts_n^{t-1} \end{matrix} \right] \end{aligned} \tag{4} WtE=δ1ts1t1δ2ts1t1δnts1t1δ1ts2t1δ2ts2t1δnts2t1δ1tsnt1δ2tsnt1δntsnt1(4)

式中, δ i t \delta_i^t δit表示 t t t时刻误差项向量的第 i i i个分量; s i t − 1 s_i^{t-1} sit1表示 t − 1 t-1 t1时刻循环层第 i i i个神经元的输出值。

式4推导

由前文知 n e t t = U X t + W S t − 1 net_t=UX_t+WS_{t-1} nett=UXt+WSt1,即

[ n e t 1 t n e t 2 t ⋮ n e t n t ] = U X t + [ w 11 w 12 ⋯ w 1 n w 21 w 22 ⋯ w 2 n ⋮ ⋮ ⋱ ⋮ w n 1 w n 2 ⋯ w n m ] [ s 1 t − 1 s 2 t − 1 ⋮ s n t − 1 ] = U X t + [ w 11 s 1 t − 1 w 12 s 2 t − 1 ⋯ w 1 n s n t − 1 w 21 s 1 t − 1 w 22 s 2 t − 1 ⋯ w 2 n s n t − 1 ⋮ ⋮ ⋱ ⋮ w n 1 s 1 t − 1 w n 2 s 2 t − 1 ⋯ w n m s n t − 1 ] \begin{aligned}\left[ \begin{matrix} net_1^t \\ net_2^t \\ \vdots \\ net_n^t \end{matrix} \right] &=UX_t+\left[ \begin{matrix} w_{11} & w_{12} & \cdots & w_{1n}\\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{matrix} \right]\left[ \begin{matrix} s_1^{t-1} \\ s_2^{t-1} \\ \vdots \\ s_n^{t-1} \end{matrix} \right] \\ &=UX_t+\left[ \begin{matrix} w_{11}s_1^{t-1} & w_{12}s_2^{t-1} & \cdots & w_{1n}s_n^{t-1}\\ w_{21}s_1^{t-1} & w_{22}s_2^{t-1} & \cdots & w_{2n}s_n^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1}s_1^{t-1} & w_{n2}s_2^{t-1} & \cdots & w_{nm}s_n^{t-1} \end{matrix} \right] \end{aligned} net1tnet2tnetnt=UXt+w11w21wn1w12w22wn2w1nw2nwnms1t1s2t1snt1=UXt+w11s1t1w21s1t1wn1s1t1w12s2t1w22s2t1wn2s2t1w1nsnt1w2nsnt1wnmsnt1

因为对 W W W求导与 U X t UX_t UXt无关,我们不再考虑。现在,我们考虑对权重 w j i w_{ji} wji求导。通过观察上式我们可以看到 w j i w_{ji} wji只与 n e t j t net_j^t netjt有关,所以:

∂ E ∂ w j i = ∂ E ∂ n e t j t ∂ n e t j t ∂ w j i = δ j t s i t − 1 \begin{aligned}\frac{\partial E}{\partial w_{ji}} &=\frac{\partial E}{\partial net_j^t}\frac{\partial net_j^t}{\partial w_{ji}} \\ &=\delta_j^ts_i^{t-1} \end{aligned} wjiE=netjtEwjinetjt=δjtsit1

按照上面的规律就可以生成式4里面的矩阵。

我们已经求得了权重矩阵 W W W t t t 的梯度 ∇ W t E \nabla_{W_t}E WtE,最终的梯度 ∇ W E \nabla_WE WE是各个时刻的梯度之和:

∇ W E = Σ i = 1 t ∇ W t E = [ δ 1 1 s 1 0 δ 1 1 s 2 0 ⋯ δ 1 1 s n 0 δ 2 1 s 1 0 δ 2 1 s 2 0 ⋯ δ 2 1 s n 0 ⋮ ⋮ ⋱ ⋮ δ n 1 s 1 0 δ n 1 s 2 0 ⋯ δ n 1 s n 0 ] + ⋯ + [ δ 1 t s 1 t − 1 δ 1 t s 2 t − 1 ⋯ δ 1 t s n t − 1 δ 2 t s 1 t − 1 δ 2 t s 2 t − 1 ⋯ δ 2 t s n t − 1 ⋮ ⋮ ⋱ ⋮ δ n t s 1 t − 1 δ n t s 2 t − 1 ⋯ δ n t s n t − 1 ] (5) \begin{aligned}\nabla_WE &= \Sigma_{i=1}^t\nabla_{W_t}E \\ &=\left[ \begin{matrix} \delta_1^1s_1^0 & \delta_1^1s_2^0 & \cdots & \delta_1^1s_n^0 \\ \delta_2^1s_1^0 & \delta_2^1s_2^0 & \cdots & \delta_2^1s_n^0 \\ \vdots & \vdots & \ddots & \vdots \\ \delta_n^1s_1^0 & \delta_n^1s_2^0 & \cdots & \delta_n^1s_n^0 \end{matrix} \right]+\cdots+\left[ \begin{matrix} \delta_1^ts_1^{t-1} & \delta_1^ts_2^{t-1} & \cdots & \delta_1^ts_n^{t-1} \\ \delta_2^ts_1^{t-1} & \delta_2^ts_2^{t-1} & \cdots & \delta_2^ts_n^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_n^ts_1^{t-1} & \delta_n^ts_2^{t-1} & \cdots & \delta_n^ts_n^{t-1} \end{matrix} \right] \end{aligned}\tag5{} WE=Σi=1tWtE=δ11s10δ21s10δn1s10δ11s20δ21s20δn1s20δ11sn0δ21sn0δn1sn0++δ1ts1t1δ2ts1t1δnts1t1δ1ts2t1δ2ts2t1δnts2t1δ1tsnt1δ2tsnt1δntsnt1(5)

式5就是计算循环层权重矩阵 W W W梯度的公式。

前面已经介绍了 ∇ W E \nabla_WE WE的计算方法,看上去还是比较直观的。然而,读者也许会困惑,为什么最终的梯度是各个时刻的梯度之和呢?我们前面只是直接用了这个结论,实际上这里面是有道理的,只是这个数学推导比较绕脑子。感兴趣的同学可以仔细阅读接下来这一段,它用到了矩阵对矩阵求导、张量与向量相乘运算的一些法则。

式5推导

我们还是从这个式子开始:

n e t t = U X t + W f ( n e t t − 1 ) net_t=UX_t+Wf(net_{t-1}) nett=UXt+Wf(nett1)

因为 U X t UX_t UXt W W W完全无关,我们把它看作常量。现在,考虑第一个式子加号右边的部分,因为 W W W f ( n e t t − 1 ) f(net_{t-1}) f(nett1)都是 W W W的函数,因此我们要用到大学里学过的复合函数求导方法:

( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv

因此,上面的式子写成:

∂ n e t t ∂ W = ∂ W ∂ W f ( n e t t − 1 ) + W ∂ f ( n e t t − 1 ) ∂ W \frac{\partial net_t}{\partial W}=\frac{\partial W}{\partial W}f(net_{t-1})+W\frac{\partial f(net_{t-1})}{\partial W} Wnett=WWf(nett1)+WWf(nett1)

我们最终需要计算的是 ∇ W E \nabla_WE WE

∇ W E = ∂ E ∂ W = ∂ E ∂ n e t t ∂ n e t t ∂ W = δ t T ∂ W ∂ W f ( n e t t − 1 ) + δ t T W ∂ f ( n e t t − 1 ) ∂ W (6) \begin{aligned}\nabla_WE &=\frac{\partial E}{\partial W} \\ &=\frac{\partial E}{\partial net_t}\frac{\partial net_t}{\partial W} \\ &=\delta_t^T\frac{\partial W}{\partial W}f(net_{t-1})+\delta_t^TW\frac{\partial f(net_{t-1})}{\partial W} \end{aligned} \tag{6} WE=WE=nettEWnett=δtTWWf(nett1)+δtTWWf(nett1)(6)

先计算式6加号左边部分 ∂ W ∂ W \frac{\partial W}{\partial W} WW是矩阵对矩阵求导,其结果是一个四维张量(tensor):

∂ W ∂ W = [ ∂ w 11 ∂ W ∂ w 12 ∂ W ⋯ ∂ w 1 n ∂ W ∂ w 21 ∂ W ∂ w 22 ∂ W ⋯ ∂ w 2 n ∂ W ⋮ ⋮ ⋱ ⋮ ∂ w n 1 ∂ W ∂ w n 2 ∂ W ⋯ ∂ w n n ∂ W ] = [ [ ∂ w 11 ∂ w 11 ∂ w 11 ∂ w 12 ⋯ ∂ w 11 ∂ w 1 n ∂ w 11 ∂ w 21 ∂ w 11 ∂ w 22 ⋯ ∂ w 11 ∂ w 2 n ⋮ ⋮ ⋱ ⋮ ∂ w 11 ∂ w n 1 ∂ w 11 ∂ w n 2 ⋯ ∂ w 11 ∂ w n n ] [ ∂ w 12 ∂ w 11 ∂ w 12 ∂ w 12 ⋯ ∂ w 12 ∂ w 1 n ∂ w 12 ∂ w 21 ∂ w 12 ∂ w 22 ⋯ ∂ w 12 ∂ w 2 n ⋮ ⋮ ⋱ ⋮ ∂ w 12 ∂ w n 1 ∂ w 12 ∂ w n 2 ⋯ ∂ w 12 ∂ w n n ] ⋯ ⋮ ⋮ ] = [ [ 1 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] [ 0 1 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] ⋯ ⋮ ⋮ ] \begin{aligned}\frac{\partial W}{\partial W} &=\left[ \begin{matrix} \frac{\partial w_{11}}{\partial W} & \frac{\partial w_{12}}{\partial W} & \cdots & \frac{\partial w_{1n}}{\partial W} \\ \frac{\partial w_{21}}{\partial W} & \frac{\partial w_{22}}{\partial W} & \cdots & \frac{\partial w_{2n}}{\partial W} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial w_{n1}}{\partial W} & \frac{\partial w_{n2}}{\partial W} & \cdots & \frac{\partial w_{nn}}{\partial W} \end{matrix} \right] \\ &=\left[\begin{matrix}\left[ \begin{matrix} \frac{\partial w_{11}}{\partial w_{11}} & \frac{\partial w_{11}}{\partial w_{12}} & \cdots & \frac{\partial w_{11}}{\partial w_{1n}} \\ \frac{\partial w_{11}}{\partial w_{21}} & \frac{\partial w_{11}}{\partial w_{22}} & \cdots & \frac{\partial w_{11}}{\partial w_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial w_{11}}{\partial w_{n1}} & \frac{\partial w_{11}}{\partial w_{n2}} & \cdots & \frac{\partial w_{11}}{\partial w_{nn}} \end{matrix} \right] & \left[ \begin{matrix} \frac{\partial w_{12}}{\partial w_{11}} & \frac{\partial w_{12}}{\partial w_{12}} & \cdots & \frac{\partial w_{12}}{\partial w_{1n}} \\ \frac{\partial w_{12}}{\partial w_{21}} & \frac{\partial w_{12}}{\partial w_{22}} & \cdots & \frac{\partial w_{12}}{\partial w_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial w_{12}}{\partial w_{n1}} & \frac{\partial w_{12}}{\partial w_{n2}} & \cdots & \frac{\partial w_{12}}{\partial w_{nn}} \end{matrix} \right] \cdots \\ \vdots & \vdots \end{matrix} \right] \\ &=\left[\begin{matrix}\left[ \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{matrix} \right] & \left[ \begin{matrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{matrix} \right] \cdots \\ \vdots & \vdots \end{matrix} \right] \end{aligned} WW=Ww11Ww21Wwn1Ww12Ww22Wwn2Ww1nWw2nWwnn=w11w11w21w11wn1w11w12w11w22w11wn2w11w1nw11w2nw11wnnw11w11w12w21w12wn1w12w12w12w22w12wn2w12w1nw12w2nw12wnnw12=100000000000100000

接下来,我们知道 S t − 1 = f ( n e t t − 1 ) S_{t-1}=f(net_{t-1}) St1=f(nett1),它是一个列向量。让上面的四维张量与这个向量相乘,得到一个三维张量,再左乘行向量 δ t T \delta_t^T δtT,最终得到一个矩阵:

δ t T ∂ W ∂ W f ( n e t t − 1 ) = δ t T ∂ E ∂ W S t − 1 = δ t T [ [ 1 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] [ 0 1 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 ] ⋯ ⋮ ⋮ ] [ s 1 t − 1 s 2 t − 1 ⋮ s n t − 1 ] = δ t T [ [ s 1 t − 1 0 ⋮ 0 ] [ s 2 t − 1 0 ⋮ 0 ] ⋯ ⋮ ⋮ ] = [ δ 1 t δ 2 t ⋯ δ n t ] [ [ s 1 t − 1 0 ⋮ 0 ] [ s 2 t − 1 0 ⋮ 0 ] ⋯ ⋮ ⋮ ] = [ δ 1 t s 1 t − 1 δ 1 t s 2 t − 1 ⋯ δ 1 t s n t − 1 δ 2 t s 1 t − 1 δ 2 t s 2 t − 1 ⋯ δ 2 t s n t − 1 ⋮ ⋮ ⋱ ⋮ δ n t s 1 t − 1 δ n t s 2 t − 1 ⋯ δ n t s n t − 1 ] = ∇ W t E \begin{aligned}\delta_t^T\frac{\partial W}{\partial W}f(net_{t-1}) &=\delta_t^T\frac{\partial E}{\partial W}S_{t-1} \\ &=\delta_t^T \left[\begin{matrix}\left[ \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{matrix} \right] & \left[ \begin{matrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{matrix} \right] \cdots \\ \vdots & \vdots \end{matrix} \right] \left[ \begin{matrix} s_1^{t-1} \\ s_2^{t-1} \\ \vdots \\ s_n^{t-1} \end{matrix} \right] \\ &=\delta_t^T \left[\begin{matrix}\left[ \begin{matrix} s_1^{t-1} \\ 0 \\ \vdots \\ 0 \end{matrix} \right] & \left[ \begin{matrix} s_2^{t-1} \\ 0 \\ \vdots \\ 0 \end{matrix} \right] \cdots \\ \vdots & \vdots \end{matrix} \right] \\ &= \left[ \begin{matrix}\delta_1^t & \delta_2^t & \cdots & \delta_n^t \end{matrix} \right]\left[\begin{matrix}\left[ \begin{matrix} s_1^{t-1} \\ 0 \\ \vdots \\ 0 \end{matrix} \right] & \left[ \begin{matrix} s_2^{t-1} \\ 0 \\ \vdots \\ 0 \end{matrix} \right] \cdots \\ \vdots & \vdots \end{matrix} \right] \\ &=\left[ \begin{matrix} \delta_1^ts_1^{t-1} & \delta_1^ts_2^{t-1} & \cdots & \delta_1^ts_n^{t-1} \\ \delta_2^ts_1^{t-1} & \delta_2^ts_2^{t-1} & \cdots & \delta_2^ts_n^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_n^ts_1^{t-1} & \delta_n^ts_2^{t-1} & \cdots & \delta_n^ts_n^{t-1} \end{matrix} \right] \\ &=\nabla_{W_t}E \end{aligned} δtTWWf(nett1)=δtTWESt1=δtT100000000000100000s1t1s2t1snt1=δtTs1t100s2t100=[δ1tδ2tδnt]s1t100s2t100=δ1ts1t1δ2ts1t1δnts1t1δ1ts2t1δ2ts2t1δnts2t1δ1tsnt1δ2tsnt1δntsnt1=WtE

先计算式6加号右边部分

δ t T W ∂ f ( n e t t − 1 ) ∂ W = δ t T W ∂ f ( n e t t − 1 ) ∂ n e t t − 1 ∂ n e t t − 1 ∂ W = δ t T W f ′ ( n e t t − 1 ) ∂ n e t t − 1 ∂ W = δ t T ∂ n e t t ∂ n e t t − 1 ∂ n e t t − 1 ∂ W = δ t − 1 T ∂ n e t t − 1 ∂ W \begin{aligned}\delta_t^TW\frac{\partial f(net_{t-1})}{\partial W} &=\delta_t^TW\frac{\partial f(net_{t-1})}{\partial net_{t-1}}\frac{\partial net_{t-1}}{\partial W} \\ &=\delta_t^T Wf'(net_{t-1})\frac{\partial net_{t-1}}{\partial W} \\ &=\delta_t^T\frac{\partial net_t}{\partial net_{t-1}}\frac{\partial net_{t-1}}{\partial W} \\ &=\delta_{t-1}^T\frac{\partial net_{t-1}}{\partial W} \end{aligned} δtTWWf(nett1)=δtTWnett1f(nett1)Wnett1=δtTWf(nett1)Wnett1=δtTnett1nettWnett1=δt1TWnett1

于是,我们得到了如下递推公式:

∇ W E = ∂ E ∂ W = ∂ E ∂ n e t t ∂ n e t t ∂ W = ∇ W t E + δ t − 1 T ∂ n e t t − 1 ∂ W = ∇ W t E + ∇ W t − 1 E + δ t − 2 T ∂ n e t t − 2 ∂ W = ∇ W t E + ∇ W t − 1 E + ⋯ + ∇ W 1 E = Σ k = 1 t ∇ W k E \begin{aligned}\nabla_WE &=\frac{\partial E}{\partial W} \\ &=\frac{\partial E}{\partial net_t}\frac{\partial net_t}{\partial W} \\ &=\nabla_{W_t}E+\delta_{t-1}^T\frac{\partial net_{t-1}}{\partial W} \\ &=\nabla_{W_t}E+\nabla_{W_{t-1}}E+\delta_{t-2}^T\frac{\partial net_{t-2}}{\partial W} \\ &=\nabla_{W_t}E+\nabla_{W_{t-1}}E+\cdots+\nabla_{W_1}E \\ &=\Sigma_{k=1}^t \nabla_{W_k}E \end{aligned} WE=WE=nettEWnett=WtE+δt1TWnett1=WtE+Wt1E+δt2TWnett2=WtE+Wt1E++W1E=Σk=1tWkE

以上过程证明了:最终的梯度 ∇ W E \nabla_WE WE是各个时刻的梯度之和。

同权重矩阵 W W W类似,我们可以得到权重矩阵 U U U的计算方法:

∇ U t E = [ δ 1 t x 1 t δ 1 t x 2 t ⋯ δ 1 t x m t δ 2 t x 1 t δ 2 t x 2 t ⋯ δ 2 t x m t ⋮ ⋮ ⋱ ⋮ δ n t x 1 t δ n t s 2 t ⋯ δ n t x m t ] \begin{aligned}\nabla_{U_t}E &=\left[ \begin{matrix} \delta_1^tx_1^t & \delta_1^tx_2^t & \cdots & \delta_1^tx_m^t \\ \delta_2^tx_1^t & \delta_2^tx_2^t & \cdots & \delta_2^tx_m^t \\ \vdots & \vdots & \ddots & \vdots \\ \delta_n^tx_1^t & \delta_n^ts_2^t & \cdots & \delta_n^tx_m^t \end{matrix} \right] \end{aligned} UtE=δ1tx1tδ2tx1tδntx1tδ1tx2tδ2tx2tδnts2tδ1txmtδ2txmtδntxmt

上式是误差函数 E E E t t t时刻对权重矩阵 U U U的梯度。和权重矩阵 W W W一样,最终的梯度也是各个时刻的梯度之和:

∇ U E = Σ i = 1 t ∇ U i E \nabla_UE=\Sigma_{i=1}^t\nabla_{U_i}E UE=Σi=1tUiE

具体证明不再赘述,感兴趣的同学可以练习推导。

1.3.2 R N N RNN RNN的梯度爆炸和消失问题

不幸的是,实践中前面介绍的几种 R N N s RNNs RNNs并不能很好的处理较长的序列。纳尼?!这不是和前面说的矛盾吗,前面不是说能任意长么,大家可以回头看一眼,前面说的是[理论上]可以任意上,现实和理想还是有一定距离的。一个主要的原因是, R N N RNN RNN在训练中很容易发生梯度爆炸梯度消失,这导致训练时梯度不能在较长序列中一直传递下去,从而使 R N N RNN RNN无法捕捉到长距离的影响。

为什么 R N N RNN RNN会产生梯度爆炸和消失呢?我们接下来将详细分析一下原因。我们根据式3可得:

δ k T = δ t T ∏ i = k t − 1 W d i a g [ f ′ ( n e t i ) ] \delta_k^T=\delta_t^T\prod_{i=k}^{t-1}Wdiag[f'(net_i)] δkT=δtTi=kt1Wdiag[f(neti)]

∥ δ k T ∥ ≤ ∥ δ t T ∥ ∏ i = k t − 1 ∥ W ∥ ∥ d i a g [ f ′ ( n e t i ) ] ∥ ≤ ∥ δ t T ∥ ( β W β f ) t − k \begin{aligned} \parallel \delta_k^T \parallel &\leq \parallel \delta_t^T \parallel \prod_{i=k}^{t-1}\parallel W \parallel \parallel diag[f'(net_i)] \parallel \\ &\leq \parallel \delta_t^T \parallel(\beta_W\beta_f)^{t-k} \end{aligned} δkTδtTi=kt1Wdiag[f(neti)]δtT(βWβf)tk

上式的 β \beta β定义为矩阵的摸的上界。因为上式是一个指数函数,如果 t − k t-k tk很大的话(也就是向前看很远的时候),会导致对应的误差项的值增长或缩小得非常快,这样就会导致相应的梯度爆炸和梯度消失问题(取决于 β \beta β大于1还是小于1)。

通常来说,梯度爆炸更容易处理一些。因为梯度爆炸的时候,运行代码会收到 N a N NaN NaN错误。我们也可以设置一个梯度阈值,当梯度超过这个阈值的时候可以直接截取。

梯度消失更难检测,而且也更难处理一些。总的来说,我们有三种方法应对梯度消失问题:

  • 1.合理的初始化权重值。初始化权重,使每个神经元尽可能不要取极大或极小值,以避开梯度消失的区域;
  • 2.使用 r e l u relu relu代替 s i g m o i d sigmoid sigmoid t a n h tanh tanh作为激活函数。原理之前的文章里已有所提及;
  • 3.使用其他结构的 R N N s RNNs RNNs,比如长短时记忆网络(LSTM)和Gated Recurrent Unit(GRU),这是最流行的网络结构。我们将在后续内容介绍这两种网络。

1.4 R N N RNN RNN的应用举例——基于 R N N RNN RNN的语言模型

现在,引入一个例子,开篇提过的语言模型,不过现在是基于 R N N RNN RNN的语言模型。我们首先把词依次输入到循环神经网络中,每输入一个词,循环神经网络就输出截止目前为止,下一个最有可能的词。如,当我们依次输入:

我 昨天 上学 迟到 了

神经网络的输出如下图所示:

在这里插入图片描述

图中, s s s e e e是两个特殊的词,分别表示一个序列的开始和结束。

神经网络的输入和输出都是向量,为了让语言模型能够被神经网络处理,我们必须把词表达为向量的形式,这样神经网络才能处理它。

1.4.1 向量化

神经网络的输入是词,我们可以用以下步骤对输入进行向量化:

1.建立一个包含所有词的词典,每个词在词典里面有一个唯一的编号;

2.任意一个词都可以用一个 N N N维的 o n e − h o t one-hot onehot向量来表示。其中, N N N是词典中包含的词的个数。假设一个词在词典中的编号是 i i i v v v是这个词的向量, v j v_j vj是向量的第 j j j元素,则:

v j = { 1 j = i 0 j ≠ i v_j= \begin{cases} 1 && j=i\\ 0 && j\neq i\\ \end{cases} vj={10j=ij=i

上面这个公式的含义,可以用下面的图来直观的表示:

在这里插入图片描述

使用这种向量化方法,我们就得到了一个高维、稀疏的向量(稀疏是指绝大部分元素的值都是0)。处理这样的向量会导致我们的神经网络有很多的参数,带来庞大的计算量。因此,往往会需要使用一些降维方法,将高维的稀疏向量转变为低维的稠密向量。

不过这个话题我们就不再这篇文章中讨论了。

语言模型要求的输出是下一个最可能的词,我们可以让循环神经网络计算计算词典中每个词是下一个词的概率,这样,概率最大的词就是下一个最可能的词。因此,神经网络的输出向量也是一个 N N N维向量,向量中的每个元素对应着词典中相应的词是下一个词的概率。如下图所示:

在这里插入图片描述

前面提到,语言模型是对下一个词出现的概率进行建模。那么,怎样让神经网络输出概率呢?方法就是用 s o f t m a x softmax softmax层作为神经网络的输出层。

1.4.2 S o f t m a x Softmax Softmax

我们先来看一下 s o f t m a x softmax softmax函数的定义:

g ( z i ) = e z i Σ k e z k g(z_i)=\frac{e^{z_i}}{\Sigma_ke^{z_k}} g(zi)=Σkezkezi

这个公式看起来可能很晕,举例说明一下, S o f t m a x Softmax Softmax层如下图所示:

在这里插入图片描述

从上图我们可以看到, S o f t m a x Softmax Softmax l a y e r layer layer的输入是一个向量,输出也是一个向量,两个向量的维度是一样的(在这个例子里面是4)。输入向量x=[1 2 3 4]经过 s o f t m a x softmax softmax层之后,经过上面的 s o f t m a x softmax softmax函数计算,转变为输出向量y=[0.03 0.09 0.24 0.64]。计算过程为:

y 1 = e x 1 Σ k e x k = e 1 e 1 + e 2 + e 3 + e 4 = 0.03 y_1=\frac{e^{x_1}}{\Sigma_ke^{x_k}}=\frac{e^1}{e^1+e^2+e^3+e^4}=0.03 y1=Σkexkex1=e1+e2+e3+e4e1=0.03

y 2 = e 2 e 1 + e 2 + e 3 + e 4 = 0.09 y_2=\frac{e^2}{e^1+e^2+e^3+e^4}=0.09 y2=e1+e2+e3+e4e2=0.09

y 3 = e 3 e 1 + e 2 + e 3 + e 4 = 0.24 y_3=\frac{e^3}{e^1+e^2+e^3+e^4}=0.24 y3=e1+e2+e3+e4e3=0.24

y 4 = e 4 e 1 + e 2 + e 3 + e 4 = 0.64 y_4=\frac{e^4}{e^1+e^2+e^3+e^4}=0.64 y4=e1+e2+e3+e4e4=0.64

总结一下输出向量 y y y的特征:

1.每一项为取值为0-1之间的正数;

2.所有项的总和为1。

不难发现,这些特征和概率的特征是一样的,因此我们可以把它们看做是概率。对于语言模型来说,我们可以认为模型预测下一个词是词典中第一个词的概率是0.03,是词典中第二个词的概率是0.09,以此类推。

1.4.3 语言模型的训练

可以使用监督学习的方法对语言模型进行训练,首先,需要准备训练数据集。接下来,我们介绍怎样把语料转换成语言模型的训练数据集。

我 昨天 上学 迟到 了

首先,我们获取输入-标签对:

输入标签
s
昨天
昨天上学
上学迟到
迟到
e

然后,使用前面介绍过的向量化方法,对输入x和标签y进行向量化。这里面有意思的是,对标签y进行向量化,其结果也是一个one-hot向量。例如,我们对标签『我』进行向量化,得到的向量中,只有第2019个元素的值是1,其他位置的元素的值都是0。它的含义就是下一个词是『我』的概率是1,是其它词的概率都是0。

最后,我们使用交叉熵误差函数作为优化目标,对模型进行优化。

注:在实际工程中,我们可以使用大量的语料来对模型进行训练,获取训练数据和训练的方法都是相同的。

1.4.4 交叉熵误差

一般来说,当神经网络的输出层是 S o f t m a x Softmax Softmax层时,对应的误差函数E通常选择交叉熵误差函数,其定义如下:

L ( y , o ) = − 1 N Σ n ∈ N y n l o g o n L(y,o)=-\frac{1}{N}\Sigma_{n\in N}y_nlogo_n L(y,o)=N1ΣnNynlogon

在上式中, N N N是训练样本的个数,向量 y n y_n yn是样本的标记,向量 o n o_n on是网络的输出。标记 y n y_n yn是一个one-hot向量,例如 y 1 = [ 1 , 0 , 0 , 0 ] y_1=[1,0,0,0] y1=[1,0,0,0],如果网络的输出 o = [ 0.03 , 0.09 , 0.24 , 0.64 ] o=[0.03,0.09,0.24,0.64] o=[0.03,0.09,0.24,0.64],那么,交叉熵误差是(假设只有一个训练样本,即N=1):

L ( y , o ) = − 1 N Σ n ∈ N y n l o g o n = − y 1 l o g o 1 = − ( 1 ∗ l o g 0.03 + 0 ∗ l o g 0.09 + 0 ∗ l o g 0.24 + 0 ∗ l o g 0.64 ) = 3.51 \begin{aligned}L(y,o) &=-\frac{1}{N}\Sigma_{n\in N}y_nlogo_n \\ &= -y_1logo_1 \\ &= -(1*log0.03+0*log0.09+0*log0.24+0*log0.64) \\ &= 3.51 \end{aligned} L(y,o)=N1ΣnNynlogon=y1logo1=(1log0.03+0log0.09+0log0.24+0log0.64)=3.51

我们当然可以选择其他函数作为我们的误差函数,比如最小平方误差函数(MSE)。不过对概率进行建模时,选择交叉熵误差函数更make sense。具体原因,感兴趣的读者请阅读参考文献5。

1.5 小结

上述文章中,我们介绍了循环神经网络以及它的训练算法。同时也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本部分,我们将介绍一种改进之后的循环神经网络:长短时记忆网络( L S T M LSTM LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的 R N N RNN RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。但不幸的一面是, L S T M LSTM LSTM的结构很复杂,因此,我们需要花上一些力气,才能把 L S T M LSTM LSTM以及它的训练算法弄明白。在搞清楚 L S T M LSTM LSTM之后,我们再介绍一种 L S T M LSTM LSTM的变体: G R U GRU GRU。 它的结构比 L S T M LSTM LSTM简单,而效果却和 L S T M LSTM LSTM一样好,因此,它正在逐渐流行起来。

1.6 什么是 L S T M LSTM LSTM网络?

1.6.1 普通 R N N RNN RNN回顾

前述文中介绍了很多 R N N RNN RNN的内容,涉及很多公式计算,该部分以图片形式简要回顾一下,普通 R N N RNN RNN的主要形式如下图所示:

在这里插入图片描述

图中,

x x x为当前状态下数据的输入, h h h表示接收到的上一个节点的输入。

y y y为当前节点状态下的输出,而 h ′ h' h为传递到下一个节点的输出。

通过上图的公式可以看到,输出 h ′ h' h x x x h h h的值都相关。

y y y则常常使用 h ′ h' h投入到一个线性层(主要是进行维度映射)然后使用 s o f t m a x softmax softmax进行分类得到需要的数据。

对这里的 y y y如何通过 h ′ h' h计算得到往往看具体模型的使用方式。

通过序列形式的输入,我们能够得到如下形式的 R N N RNN RNN:

在这里插入图片描述

1.6.2 L S T M LSTM LSTM-特殊的 R N N RNN RNN

长短期记忆( L S T M LSTM LSTM)是一种特殊的 R N N RNN RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的 R N N RNN RNN L S T M LSTM LSTM能够在更长的序列中有更好的表现。

L S T M LSTM LSTM结构(图右)和普通 R N N RNN RNN的主要输入输出区别如下所示。

在这里插入图片描述

相比 R N N RNN RNN只有一个传递状态 h t h^t ht L S T M LSTM LSTM有两个传输状态,一个 c t c^t ct (cell state),和一个 h t h^t ht(hidden state)。( T i p s : R N N Tips:RNN TipsRNN中的 h t h^t ht对于 L S T M LSTM LSTM中的 c t c^t ct

其中对于传递下去的 c t c^t ct改变得很慢,通常输出的 c t c^t ct是上一个状态传过来的 c t − 1 c^{t-1} ct1加上一些数值。

h t h^t ht则在不同节点下往往会有很大的区别。

1.6.3 深入 L S T M LSTM LSTM结构

下面具体对 L S T M LSTM LSTM的内部结构来进行剖析。

首先使用 L S T M LSTM LSTM的当前输入 x t x^t xt和上一个状态传递下来的 h t − 1 h^{t-1} ht1拼接训练得到四个状态。

在这里插入图片描述

在这里插入图片描述

其中, z f z^f zf z i z^i zi z o z^o zo是由拼接向量乘以权重矩阵之后,再通过一个 s i g m o i d sigmoid sigmoid激活函数转换成0到1之间的数值,来作为一种门控状态。而 z z z则是将结果通过一个 t a n h tanh tanh激活函数将转换成-1到1之间的值(这里使用 t a n h tanh tanh是因为这里是将其做为输入数据,而不是门控信号)。

下面开始进一步介绍这四个状态在 L S T M LSTM LSTM内部的使用:

在这里插入图片描述

注: ⊙ \odot 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ \oplus 则代表进行矩阵加法。

L S T M LSTM LSTM内部主要有三个阶段:

  1. 忘记阶段。这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是会 “忘记不重要的,记住重要的”。具体来说是通过计算得到的 z f z^f zf f f f表示 f o r g e t forget forget)来作为忘记门控,来控制上一个状态的 c t − 1 c^{t-1} ct1哪些需要留哪些需要忘。

  2. 选择记忆阶段。这个阶段将这个阶段的输入有选择性地进行“记忆”。主要是会对输入 x t x^t xt进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的表 z z z示。而选择的门控信号则是由 z i z^i zi i i i代表 i n f o r m a t i o n information information)来进行控制。

将上面两步得到的结果相加,即可得到传输给下一个状态的 c t c^t ct。也就是上图中的第一个公式。

  1. 输出阶段。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过 z o z^o zo来进行控制的。并且还对上一阶段得到进的 c o c^o co(通过一个 t a n h tanh tanh激活函数进行变化)。

与普通 R N N RNN RNN类似,输出 y t y^t yt往往最终也是通过 h t h^t ht变化得到。

1.6.4 小结

以上,就是 L S T M LSTM LSTM的内部结构。通过门控状态来控制传输状态,记住需要长时间记忆的,忘记不重要的信息;而不像普通的 R N N RNN RNN那样只能够“呆萌”地仅有一种记忆叠加方式。对很多需要“长期记忆”的任务来说,尤其好用。

但也因为引入了很多内容,导致参数变多,也使得训练难度加大了很多。因此很多时候我们往往会使用效果和 L S T M LSTM LSTM相当但参数更少的 G R U GRU GRU来构建大训练量的模型。

1.7 什么是 G R U GRU GRU网络?

1.7.1 为什么需要 G R U GRU GRU

G R U GRU GRU G a t e R e c u r r e n t U n i t Gate Recurrent Unit GateRecurrentUnit)是 R N N RNN RNN的一种。和 L S T M LSTM LSTM一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

G R U GRU GRU L S T M LSTM LSTM在很多情况下实际表现上相差无几,那么为什么我们要使用新人 G R U GRU GRU(2014年提出)而不是相对经受了更多考验的 L S T M LSTM LSTM(1997提出)呢?

引用论文中的一段话来说明 G R U GRU GRU的优势所在:

在这里插入图片描述

我们在我们的实验中选择 G R U GRU GRU是因为它的实验效果与 L S T M LSTM LSTM相似,但是更易于计算。

简单来说就是贫穷限制了我们的计算能力…

相比 L S T M LSTM LSTM,使用 G R U GRU GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用 G R U GRU GRU

OK,那么为什么说 G R U GRU GRU更容易进行训练呢,下面开始介绍一下 G R U GRU GRU的内部结构。

1.7.2 G R U GRU GRU的输入输出结构

G R U GRU GRU的输入输出结构与普通的 R N N RNN RNN是一样的,如下图所示:

在这里插入图片描述

有一个当前的输入 x t x^t xt,和上一个节点传递下来的隐状态 h t − 1 h^{t-1} ht1(hidden state)),这个隐状态包含了之前节点的相关信息。

结合 x t x^t xt h t − 1 h^{t-1} ht1 G R U GRU GRU会得到当前隐藏节点的输出 y t y^t yt和传递给下一个节点的隐状态 h t h^t ht

那么, G R U GRU GRU到底有什么特别之处呢?下面来对它的内部结构进行分析!

1.7.3 G R U GRU GRU的内部结构

G R U GRU GRU的内部结构如下图所示:

在这里插入图片描述

注: ⊙ \odot 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ \oplus 则代表进行矩阵加法。

首先,我们先通过上一个传输下来的状态 h t − 1 h^{t-1} ht1和当前节点的输入 x t x^t xt来获取两个门控状态。如下图,其中 r r r控制重置的门控(reset gate), z z z为控制更新的门控(update gate)。

在这里插入图片描述

Tips: δ \delta δ s i g m o i d sigmoid sigmoid函数,通过这个函数可以将数据变换为0-1范围内的数值,从而来充当门控信号。

L S T M LSTM LSTM分明的层次结构不同,下面将对 G R U GRU GRU进行一气呵成的介绍~~~ 请大家屏住呼吸,不要眨眼。

得到门控信号之后,首先使用重置门控来得到**“重置”之后的数据 h ′ t − 1 = h t − 1 ⊙ r h'^{t-1}=h^{t-1}\odot r ht1=ht1r ,再将 h ′ t − 1 h'^{t-1} ht1与输入 x t x^t xt进行拼接,再通过一个 t a n h tanh tanh激活函数来将数据放缩到-1~1**的范围内。即得到如下图所示的 h ′ h' h

在这里插入图片描述

这里的 h ′ h' h主要是包含了当前输入的 x t x^t xt数据。有针对性地对 h ′ h' h添加到当前的隐藏状态,相当于“记忆了当前时刻的状态”,类似于LSTM的选择记忆阶段 。

最后介绍 G R U GRU GRU最关键的一个步骤,我们可以称之为**”更新记忆“**阶段。

在这个阶段,我们同时进行了遗忘了记忆两个步骤。我们使用了先前得到的更新门控 z z z(update gate)。

更新表达式 h t = z ⊙ h t − 1 + ( 1 − z ) ⊙ h ′ h^t=z\odot h^{t-1}+(1-z)\odot h' ht=zht1+(1z)h

首先再次强调一下,门控信号(这里的 z z z)的范围为0~1。门控信号越接近1,代表“记忆”下来的数据越多;而越接近0则代表“遗忘”的越多。

G R U GRU GRU很聪明的一点就在于,我们使用了同一个门控 z z z就同时可以进行遗忘和选择记忆( L S T M LSTM LSTM则要使用多个门控)

  • z ⊙ h t − 1 z\odot h^{t-1} zht1 :表示对原本隐藏状态的选择性“遗忘”。这里的 z z z可以想象成遗忘门(forget gate),忘记 h t − 1 h^{t-1} ht1维度中一些不重要的信息。
  • ( 1 − z ) ⊙ h ′ (1-z)\odot h' (1z)h : 表示对包含当前节点信息的进 h ′ h' h行选择性“记忆”。与上面类似,这里的 ( 1 − z ) (1-z) (1z)同理会忘记 h ′ h' h维度中的一些不重要的信息。或者,这里我们更应当看做是对 h ′ h' h维度中的某些信息进行选择。
  • h t = z ⊙ h t − 1 + ( 1 − z ) ⊙ h ′ h^t=z\odot h^{t-1}+(1-z)\odot h' ht=zht1+(1z)h :结合上述,这一步的操作就是忘记传递下来的 h t − 1 h^{t-1} ht1中的某些维度信息,并加入当前节点输入的某些维度信息。

可以看到,这里的遗忘 z z z和选择是 ( 1 − z ) (1-z) (1z)联动的。也就是说,对于传递进来的维度信息,我们会进行选择性遗忘,即遗忘了多少权重 ( z ) (z) (z),我们就会使用包含当前输入的 h ′ h' h中所对应的权重进行弥补 ( 1 − z ) (1-z) (1z)。以保持一种”恒定“状态。

1.7.4 L S T M LSTM LSTM G R U GRU GRU的关系

G R U GRU GRU是在2014年提出来的,而 L S T M LSTM LSTM是1997年。它们的提出都是为了解决相似的问题,那么 G R U GRU GRU难免会参考 L S T M LSTM LSTM的内部结构。那么他们之间的关系大概是怎么样的呢?这里简单介绍一下。

大家看到 r r r(reset gate)实际上与它的名字有点不符。我们仅仅使用它来获得了 h ′ h' h

那么这里的 h ′ h' h实际上可以看成对应于 L S T M LSTM LSTM中的hidden state;上一个节点传下来的则 h t − 1 h^{t-1} ht1对应于 L S T M LSTM LSTM中的cell state。 z z z对应的则是 L S T M LSTM LSTM中的 z f z^f zf forget gate,那么我 ( 1 − z ) (1-z) (1z)们似乎就可以看成是选择门 z i z^i zi了。

1.7.5 小结

G R U GRU GRU输入输出的结构与普通的 R N N RNN RNN相似,其中的内部思想与 L S T M LSTM LSTM相似。

L S T M LSTM LSTM相比, G R U GRU GRU内部少了一个”门控“,参数比 L S T M LSTM LSTM少,但是却也能够达到与 L S T M LSTM LSTM相当的功能。考虑到硬件的计算能力时间成本,因而很多时候我们也就会选择更加“实用”的 G R U GRU GRU

声明

本博客所有内容仅供学习,不为商用,如有侵权,请联系博主,谢谢。

参考文献

[1] 李宏毅,Deep Learning Tutorial,2018

[2] R N N RNN RNN: https://zybuluo.com/hanbingtao/note/541458

[3] L S T M LSTM LSTM: https://zhuanlan.zhihu.com/p/32085405

[4] GRU: https://zhuanlan.zhihu.com/p/32481747

[5] https://jamesmccaffrey.wordpress.com/2011/12/17/neural-network-classification-categorical-data-softmax-activation-and-cross-entropy-error/

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值