python中 inplace 参数的理解

Pandas库中的inplace参数用于控制数据框操作是否直接在原对象上进行。当设置为True时,操作会修改原数据框;而设置为False,则会返回一个新的数据框副本。通过示例展示了inplace=True和inplace=False时,drop函数对数据框的影响,强调了理解inplace参数对于避免意外数据更改的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改

  inplace = True:不创建新的对象,直接对原始对象进行修改; ​ inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。

其默认的数值是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。

实例1--inplace=True情况:


import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])
data=df.drop(["A"],axis=1,inplace=True)
print(df)
print(data)
​
>> 
          B         C
0  0.472730 -0.626685
1  0.065358  0.031326
2 -0.318582  1.123308
3 -0.097687  0.018820
None
​

此时对df改变为data之后,其原来的df值也会改变!!

实例2--inplace=False情况:

df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])
data=df.drop(["A"],axis=1,inplace=False)
print(df)
print(data)
​
>>
         A         B         C
0 -0.731578  0.226483  0.986656
1  0.075936  1.622889  1.767967
2 -1.477780 -0.164374 -1.025555
3 -0.645208 -0.847264 -0.744622
         B         C
0  0.226483  0.986656
1  1.622889  1.767967
2 -0.164374 -1.025555
3 -0.847264 -0.744622
​
此时对df改变为data之后,其原来的df值没有改变!!

另外,要注意的是,inplace的取值只有False和True,如给定0或1,会报如下错误:

ValueError: For argument "inplace" expected type bool, received type int.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心之所向521

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值