python中drop用法_Python drop方法删除列之inplace参数实例

de647c02a396977619bd098b86c54b45.png

drop方法有一个可选参数inplace,表明可对原数组作出修改并返回一个新数组。不管参数默认为False还是设置为True,原数组的内存值是不会改变的,区别在于原数组的内容是否直接被修改。默认为False,表明原数组内容并不改变,如果我们需要得到改变后的内容,需要将新结果赋给一个新的数组,即data = data.drop(["test","test2"],1)。

如果将inplace值设定为True,则原数组内容直接被改变。

测试程序如下

#增加两列空值

import numpy as np

data["test"] = np.nan

data["test2"] = np.nan

namegenderagetest2test

0jerryM36NaNNaN

1emmaF23NaNNaN

2tonyM34NaNNaN

4bobM20NaNNaN

#查看此时data的内存地址

id(data)

128971088

#删除这两列,inplace默认为False

id(data.drop(["test","test2"],1))

128971888

#查看data,发现数据并未改变

data

namegenderagetesttest2

0jerryM36NaNNaN

1emmaF23NaNNaN

2tonyM34NaNNaN

4bobM20NaNNaN

#查看data的ID

id(data)

128971088

#删除这两列,inplace设置为False

id(data.drop(["test","test2"],1,inplace = True))

1545984728

#查看data,数据已经改变

data

namegenderagetesttest2

0jerryM36NaNNaN

1emmaF23NaNNaN

2tonyM34NaNNaN

4bobM20NaNNaN

#查看data的ID

id(data)

128971088

补充知识:python 使用del和drop方法删除DataFrame的列,使用drop方法一次删除多列

使用del和drop方法删除DataFrame中的列,使用drop方法一次删除多列

# 使用del, 一次只能删除一列,不能一次删除多列

# 只能使用 del df["密度"], 不能使用 del df[["密度", "含糖率"]]

del df["密度"]

# del df[["密度", "含糖率"]] 报错

# 使用drop,有三种方法:

dt = dt.drop(["密度", "含糖率"], axis=1) # axis=1 表示删除列,["密度", "含糖率"] 要删除的col的列表,可一次删除多列

dt.drop(["密度", "含糖率"], axis=1, inplace=True) # inplace=True, 直接从内部删除

dt.drop(dt.columns[[0, 4, 8]], axis=1, inplace=True) # dt.columns[[0, 4, 8]] 直接使用索引查找列

以上这篇Python drop方法删除列之inplace参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持云海天教程。

原文链接:https://blog.csdn.net/qq_38923076/article/details/82818524

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值