目录
1.Faster RCNN的特点及优点:
-
性能优越:Faster RCNN通过两阶网络与RPN,实现了精度较高的物体检测性能。
-
两阶网络:相比起其他一阶网络,两阶更为精准,尤其是针对高精度、多尺度以及小物体问题上,两阶网络优势更为明显。
-
通用性与鲁棒性:Faster RCNN在多个数据集及物体任务上效果都很好,对于个人的数据集,往往Fine-tune(微调)后就能达到较好的效果。
-
可优化点很多:Faster RCNN的整个算法框架中可以进行优化的点很多,提供了广阔的算法优化空间。
-
代码全面:各大深度学习框架都有较好的Faster RCNN源码实现,使用方便。
2.存在的缺点及急需改进的地方
当然,