【Go类库分享】mcp-go Go搭建MCP服务

【Go类库分享】mcp-go Go搭建MCP服务

介绍

目前Go 生态圈有两个知名的开发 MCP 的库,一个是mark3labs/mcp-go,另一个是metoro-io/mcp-golang。

在介绍常用库之前,先来简单介绍一下mcp协议:

MCP全称Model Context Protocol 模型上下文协议,MCP 是一个开放协议,它为应用程序向 LLM 提供上下文的方式进行了标准化。你可以将 MCP 想象成 AI 应用程序的 USB-C 接口。就像 USB-C 为设备连接各种外设和配件提供了标准化的方式一样,MCP 为 AI 模型连接各种数据源和工具提供了标准化的接口。

相比之前各大AI厂商各自为战,接口以及协议之间不通用,导致开发者针对同一个功能为了适配多个AI模型,需要开发多套。现在有了MCP,各大模型厂商和开发者只需遵循MCP协议,即可实现一次编写,多模型适用。

MCP与大模型调用之间原理图:
在这里插入图片描述
MCP架构主要包含一下几个模块:

  • MCP Hosts: 如 Claude Desktop、IDE 、DeepChat或 AI 工具,希望通过 MCP 访问数据的程序
  • MCP Clients: 维护与服务器一对一连接的协议客户端
  • MCP Servers: 轻量级程序,通过标准的 Model Context Protocol 提供特定能力
  • 本地数据源: MCP 服务器可安全访问的计算机文件、数据库和服务
  • 远程服务: MCP 服务器可连接的互联网上的外部系统(如通过 APIs)

安装

go get "github.com/mark3labs/mcp-go"

API介绍

1. server.NewMCPServer:新建一个mcp server

目前MCP 支持 SSE 和Stdio两种类型。

  1. stdio:standard input output,标准输入输出,适用于mcp client和mcp server部署在同一个机器上,不涉及跨机器。
  2. sse:Server-Sent Events,服务器发送事件,是一个基于HTTP的协议。适用于mcp client与mcp server不在同一个机器中的场景,涉及网络传输。

这里我们以新建一个基于Stdio协议的mcp server为例:

//新建mcp 服务
mcpServer := server.NewMCPServer("ziyi Mcp Server", "1.0.0")
//对外提供 stdio mcp server服务
if err := server.ServeStdio(mcpServer); err != nil {
	panic(err)
}

2. mcp.NewResource:对外提供资源

资源是你向 LLMs 暴露数据的方式。它们可以是任何东西:文件、API 响应、数据库查询、系统信息等。资源可以是:

  • 静态资源(固定 URI)
  • 动态资源(使用 URI 模板)
//新增一个mcp server对外暴露的静态资源(固定URI),比如:对外暴露项目的操作手册以及部署方式等,就可以通过静态资源README文件的方式来告诉大模型
resource := mcp.NewResource(
	"docs://readme",
	"项目的README文件",
	mcp.WithResourceDescription("这是一个项目的README文件"),
	mcp.WithMIMEType("text/markdown"),
)
// 添加对静态资源的处理器
mcpServer.AddResource(resource, func(ctx context.Context, request mcp.ReadResourceRequest) ([]mcp.ResourceContents, error) {
	content, err := os.ReadFile("README.md")
	if err != nil {
		return nil, err
	}

	return []mcp.ResourceContents{
		mcp.TextResourceContents{
			URI:      "docs://readme",
			MIMEType: "text/markdown",
			Text:     string(content),
		},
	}, nil
})

3. mcp.NewTool:对外提供工具

工具让 LLM 通过你的服务器执行操作。与资源不同,工具预期会进行计算并产生副作用。它们类似于 REST API 中的 POST 端点。 下面是一个算术运算的工具示例:

工具可以用于任何种类的计算:

  1. Database queries 数据库查询
  2. File operations 文件操作
  3. External API calls 外部 API 调用
  4. Calculations 计算
  5. System operations 系统操作

每个工具应该:

  1. 有清晰的描述
  2. 验证输入
  3. 优雅处理错误
  4. 返回结构化的响应
  5. 使用适当的结果类型
//给该mcp server添加计算能力(Tools)
// 1. 描述该工具,以及调用该工具调用的参数机器含义
calculatorTool := mcp.NewTool("calculate",
	mcp.WithDescription("进行基础的数学运算"),
	mcp.WithString("operation",
		mcp.Required(),
		mcp.Description("The arithmetic operation to perform"),
		mcp.Enum("add", "subtract", "multiply", "divide"),
	),
	mcp.WithNumber("x",
		mcp.Required(),
		mcp.Description("First number"),
	),
	mcp.WithNumber("y",
		mcp.Required(),
		mcp.Description("Second number"),
	),
)
// 2. 实现工具的具体处理逻辑,类比大模型function_calling中的func部分
mcpServer.AddTool(calculatorTool, func(ctx context.Context, request mcp.CallToolRequest) (*mcp.CallToolResult, error) {
	op := request.Params.Arguments["operation"].(string)
	x := request.Params.Arguments["x"].(float64)
	y := request.Params.Arguments["y"].(float64)

	var result float64
	switch op {
	case "add":
		result = x + y
	case "subtract":
		result = x - y
	case "multiply":
		result = x * y
	case "divide":
		if y == 0 {
			return nil, errors.New("Division by zero is not allowed")
		}
		result = x / y
	}

	return mcp.FormatNumberResult(result), nil
})

4. s.AddPrompt:添加提示词

下面是一个简单的提示词示例,它需要一个名称参数,然后返回一个问候提示词:

// 给mcpServer添加提示词模版
mcpServer.AddPrompt(mcp.NewPrompt("打招呼",
	mcp.WithPromptDescription("A friendly greeting prompt"),
	mcp.WithArgument("name",
		mcp.ArgumentDescription("Name of the person to greet"),
	),
), func(ctx context.Context, request mcp.GetPromptRequest) (*mcp.GetPromptResult, error) {
	name := request.Params.Arguments["name"]
	if name == "" {
		name = "friend"
	}

	return mcp.NewGetPromptResult(
		"A friendly greeting",
		[]mcp.PromptMessage{
			mcp.NewPromptMessage(
				mcp.RoleAssistant,
				mcp.NewTextContent(fmt.Sprintf("Hello, %s! How can I help you today?", name)),
			),
		},
	), nil
})

实战使用

1. 编写mcp server

这里我们演示一个查询IP的mcp server。大模型传入ip,mcp server返回地址信息。

ip mcp server全部代码:

package main

import (
	"context"
	"errors"
	"fmt"
	"github.com/mark3labs/mcp-go/mcp"
	"github.com/mark3labs/mcp-go/server"
	"io"
	"net"
	"net/http"
)

func main() {
	// Create MCP server
	s := server.NewMCPServer(
		"ip-mcp",
		"1.0.0",
	)

	// Add tool
	tool := mcp.NewTool("ip_query",
		mcp.WithDescription("query geo location of an IP address"),
		mcp.WithString("ip",
			mcp.Required(),
			mcp.Description("IP address to query"),
		),
	)

	// Add tool handler
	s.AddTool(tool, ipQueryHandler)

	// Start the stdio server
	if err := server.ServeStdio(s); err != nil {
		fmt.Printf("Server error: %v\n", err)
	}
}

func ipQueryHandler(ctx context.Context, request mcp.CallToolRequest) (*mcp.CallToolResult, error) {
	ip, ok := request.Params.Arguments["ip"].(string)
	if !ok {
		return nil, errors.New("ip must be a string")
	}

	parsedIP := net.ParseIP(ip)
	if parsedIP == nil {
		return nil, errors.New("invalid IP address")
	}

	resp, err := http.Get("https://ip.rpcx.io/api/ip?ip=" + ip)
	if err != nil {
		return nil, fmt.Errorf("Error fetching IP information: %v", err)
	}
	defer resp.Body.Close()

	data, err := io.ReadAll(resp.Body)
	if err != nil {
		return nil, fmt.Errorf("Error reading response body: %v", err)
	}
	fmt.Printf("call ip: %s  Response body: %s\n", ip, string(data))
	return mcp.NewToolResultText(string(data)), nil
}

然后我们编译代码:

# 执行命令编译mcp server
go build -o mcp-ip main.go

在这里插入图片描述

2. 桌面版调用mcp server插件

这里使用桌面版的deepchat来演示大模型调用mcp server。

deepchat下载地址:https://deepchat.thinkinai.xyz/#/download

  1. 下载后配置本地大模型(通过ollama方式搭建等)或者直接配置远程模型地址

远程模型这里我使用openrouter的免费deepseek-r1版本:https://openrouter.ai/deepseek/deepseek-r1:free

  1. 选择模型,配置URL以及Token后,点击校验
    在这里插入图片描述
  2. 点击下一步,然后就可以与大模型对话了
    在这里插入图片描述

tips:

  1. 可修改页面文字为中文
    在这里插入图片描述
  2. 可修改对话模型
    在这里插入图片描述
  1. 下面我们配置mcp server
    在这里插入图片描述
  2. 跳过json方式配置,转为手动配置
    在这里插入图片描述
  3. 填写mcp server配置参数,然后点击提交
    在这里插入图片描述
  4. 启用mcp server
    在这里插入图片描述
  5. 输入问题,查看效果

如:帮我查询39.156.66.10 IP信息

在这里插入图片描述

参考文章:
https://mcp-docs.cn/introduction
https://mp.weixin.qq.com/s/UgdXztu3SKYMs56DqiX3Sg
https://www.junki.cn/archives/Zqgi7fzK

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值