DarkLabel 标注的VOC 数据集格式转OTB 格式

本文介绍使用DarkLabel标注的数据集从PASCAL VOC格式转换为OTB格式的过程,解决目标跟踪中数据格式不匹配的问题。提供转换代码实现。
摘要由CSDN通过智能技术生成
  • 这段时间做目标跟踪,用到了DarkLabel 来标注自己的数据集,但是这个软件只有 voc 跟coco格式的输出,没有我想要的OTB格式的输出 ,而且网上这个方面的博客也很少于是打算记录一下

  • DarkLabel 下载地址 https://github.com/darkpgmr/DarkLabel

  • 在这里插入图片描述这里选择 pascal voc 格式

  • 生成的voc标注格式如下
    在这里插入图片描述
    请添加图片描述

  • 然后就是转换的代码

#coding=utf-8
from lxml import etree
import os


def parse_xml_to_dict(xml):
    """
    将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
    Args:
        xml: xml tree obtained by parsing XML file contents using lxml.etree

    Returns:
        Python dictionary holding XML contents.
    """

    if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
        return {
   xml.tag: xml.text}

    result = {
   
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
目标跟踪是计算机视觉领域中的一个重要任务,它旨在通过连续帧的分析和处理,在视频中准确地跟踪特定目标。OTB(Object Tracking Benchmark)数据集是一种常用的用于目标跟踪算法评估的数据集。 对于在OTB数据集上测试目标跟踪算法,首先需要将待测试的目标跟踪算法应用于OTB数据集的视频序列中。通过逐帧分析视频序列,算法可以在每一帧中定位目标的位置。随着视频的播放,算法将根据先前帧的跟踪结果来推断目标在当前帧中的位置。 在测试过程中,可以使用OTB数据集提供的标注结果对算法的跟踪准确性进行评估。标注结果是事先由人工标注的目标位置,以边界框的形式保存在数据集中。算法输出的跟踪结果也是以边界框的形式表示目标位置。 评估跟踪算法的准确性通常使用一些常见指标,如平均重叠率(average overlap)和成功率(success rate)。平均重叠率指标通过计算算法输出与标注结果的边界框之间的重叠面积来度量跟踪准确性。成功率指标则通过设置一个重叠阈值,判断算法输出的边界框是否成功跟踪目标。 通过在OTB数据集上进行测试,可以评估目标跟踪算法在不同场景下的性能表现。同时,OTB数据集也提供了用于比较不同目标跟踪算法的基准结果,有助于研究人员和开发者了解和改进目标跟踪算法的性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值