Mechine Learning——Apriori

apriori在拉丁语中指“来自以前”。
去商店买东西,商家若知道顾客1.大多买什么东西2.买什么东西时一般又会附加买另一个东西,那么商家就可以根据这些信息来制作一些购物券或者捆绑优惠的促销活动。
其中
1.大多买什么东西就是判断频繁项集的过程,即寻找出现次数多的组合
2.买什么东西时一般又会附加买另一个东西,则是在寻找暗中的关联规则
上述1,2体现了就是apriori的主要算法思路
这里又要引出两个概念,支持度和可信度
支持度:某个组合的支持度就是该组合的频率
可信度:体现着关联度,这里用“A→B”表示买A就买B。那么A→B的可信度即为P(B|A)=P(A∩B)/P(A)
首先介绍 频繁项集的生成
频繁项集(frequent item sets)是经常出现在一块的物品的集合

from numpy import *

def loadDataSet():
    return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]

def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
                
    C1.sort()
    return map(frozenset, C1)#use frozen set so we
                            #can use it as a key in a dict    

我们把所有商品标签化,用数字表示。然后把每次购买记录用列表记录,所有列表再构成一个列表形成一个数据集dataSet。
第一个函数loadDataSet生成了一个样本数据集。
createC1函数是把数据集里所有的商品标签提取出来,但都是用列表封装住,然后用map函数把这些用列表封装变为frozenset形式,这样才能再后面把它当作字典的key。

如果有五个元素,那么下图即为所有可能的组合(这里没有用数字表示,用了大写字母,但其实一样这只是个表示符号)。但要知道若A不是频繁的,那么所有包含A的组合都不可能是频繁的,这即是apriori定理的第一条。所有若是A不是频繁的,那么所有关于A的组合即不必再判断。这样可以极大的减小算法的负担。

在这里插入图片描述
在这里插入图片描述

def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:
        for can in Ck:
            if can.issubset(tid):
                if not ssCnt.has_key(can): ssCnt[can]=1
                else: ssCnt[can] += 1
    numItems = float(len(D))
    retList = []
    supportData = {}
    for key in ssCnt:
        support = ssCnt[key]/numItems
        if support >= minSupport:
            retList.insert(0,key)
        supportData[key] = support
    return retList, supportData

这个函数也是以辅助为主。有三个参数,分别是数据集,候选项集列表Ck,自己规定的最小支持度minSupport。把数据集所有数据拿出来,判断Ck的每一项是否为子集,然后判断分别计数存在ssCnt的字典中,然后遍历字典ssCnt算出每个候选项集的支持度,满足最小支持度的存入retList中。

def aprioriGen(Lk, k): #creates Ck
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i+1, lenLk): 
            L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]
            L1.sort(); L2.sort()
            if L1==L2: #if first k-2 elements are equal
                retList.append(Lk[i] | Lk[j]) #set union
    return retList

def apriori(dataSet, minSupport = 0.5):
    C1 = createC1(dataSet)
    D = map(set, dataSet)
    L1, supportData = scanD(D, C1, minSupport)
    L = [L1]
    k = 2
    while (len(L[k-2]) > 0):
        Ck = aprioriGen(L[k-2], k)
        Lk, supK = scanD(D, Ck, minSupport)#scan DB to get Lk
        supportData.update(supK)
        L.append(Lk)
        k += 1
    return L, supportData

aprioriGen函数是用来合并。比如把[{1,2},{1,3},{3,4},{1,4}](当然,里面的集合是frozenset形式)。aprioriGen函数就能把它合并成[{1,2,3},{1,2,4}],但可以发现里面没有{1,2,3,4}这个集合,也许会问{1,2}和{3,4}合并后不就是{1,2,3,4}了吗?这是由于apriori函数没有合并出4个的,如果同时出现了3个的和4个的,不方便管理。所以它只会生成3个的。还有为什么没有出现{1,3,4}?这里面体现了apriori的思路。由于每个频繁项组合都会进行sort,当前n-1都相等那么并集以后只有最后一项不等,然后并集即把n个的变为了n+1个,循序渐进。那么{1,3,4}就不存在了吗?那样岂不是少了对这一项的判断吗?这是由于[{1,2},{1,3},{3,4},{1,4}]的这一项是我瞎写的,真实情况下一定存在着{1,3},{1,4},它俩并集后就可以达到{1,3,4}的效果。还有上面说n-1,那么怎么判断n-1,这就是k的作用,在后面函数调用这个函数的时候会有动态的取k的最佳值。
apriori函数先用createC1函数创造第一个,然后用while循环,k不断增大,由于scanD的过滤作用所以最后会出现一个使得L[k-2]的长度为0的时候。最后输出了L(频繁项集列表),supportData(每一个可能组合的支持度,type=‘dict’)

频繁项集生成——大佬语录(我是8位的)
关联规则生成

判断出频繁项以后,要判断里面潜在的关联规则。在这里插入图片描述
当某条规则不满足最小可信度要求,那么该规则的所有子集也不会满足最小可信度要求。因为它的子集的可信度一定比它更低。
Confidence(012→3) = P(3|0,1,2),Confidence(01→23)=P(2,3|0,1),P(3|0,1,2) >= P(2,3|0,1)。由此可做剪枝处理。
关联规则生成——大佬语录(我是8位的)
上述链接给出了很多图像,很形象的说明了怎么剪枝怎么的所有思路。

def generateRules(L, supportData, minConf=0.7):  #supportData is a dict coming from scanD
    bigRuleList = []
    for i in range(1, len(L)):#only get the sets with two or more items
        for freqSet in L[i]:
            H1 = [frozenset([item]) for item in freqSet]
            if (i > 1):
                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
            else:
                calcConf(freqSet, H1, supportData, bigRuleList, minConf)
    return bigRuleList         

def calcConf(freqSet, H, supportData, brl, minConf=0.7):
    prunedH = [] #create new list to return
    for conseq in H:
        conf = supportData[freqSet]/supportData[freqSet-conseq] #calc confidence
        if conf >= minConf: 
            print freqSet-conseq,'-->',conseq,'conf:',conf
            brl.append((freqSet-conseq, conseq, conf))
            prunedH.append(conseq)
    return prunedH

def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):
    m = len(H[0])
    if (len(freqSet) > (m + 1)): #try further merging
        Hmp1 = aprioriGen(H, m+1)#create Hm+1 new candidates
        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
        if (len(Hmp1) > 1):    #need at least two sets to merge
            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)

generateRules是个主函数
calcConf函数用来是用来剪枝的,里面的conseq就是→后面的那个。他会把满足要求的组合放到brl中。
rulesFromConseq函数是用来生成更多关联规则。注意,里面用到了aprioriGen函数,这个函数是用来合并,里面也调用了calcConf函数,这是用来剪枝,但calcConf函数是把每个H的一项拿到→后面,这里有aprioriGen合并,这就会把一项里面的一个元素变成两个或者更多,那么就会形成新的关联规则。此外还是用了递归的思路,所以能递归到不满足len(freqSet)>m+1或不满足len(Hmp1)>1时,由于calcConf是在剪枝的过程,所以会出现递归结束。
generateRules函数中最后返回brl,这个里面存着一些元组,每个元组的第一项是→前的,第二项是→后面的,第三项是这个关联规则的可信度。而这些元组对应的关联关系都是符合最小可信度的关系。

def pntRules(ruleList, itemMeaning):
    for ruleTup in ruleList:
        for item in ruleTup[0]:
            print itemMeaning[item]
        print "           -------->"
        for item in ruleTup[1]:
            print itemMeaning[item]
        print "confidence: %f" % ruleTup[2]
        print       #print a blank line
        
            
from time import sleep
from votesmart import votesmart
votesmart.apikey = 'a7fa40adec6f4a77178799fae4441030'
#votesmart.apikey = 'get your api key first'
def getActionIds():
    actionIdList = []; billTitleList = []
    fr = open('recent20bills.txt') 
    for line in fr.readlines():
        billNum = int(line.split('\t')[0])
        try:
            billDetail = votesmart.votes.getBill(billNum) #api call
            for action in billDetail.actions:
                if action.level == 'House' and \
                (action.stage == 'Passage' or action.stage == 'Amendment Vote'):
                    actionId = int(action.actionId)
                    print 'bill: %d has actionId: %d' % (billNum, actionId)
                    actionIdList.append(actionId)
                    billTitleList.append(line.strip().split('\t')[1])
        except:
            print "problem getting bill %d" % billNum
        sleep(1)                                      #delay to be polite
    return actionIdList, billTitleList
        
def getTransList(actionIdList, billTitleList): #this will return a list of lists containing ints
    itemMeaning = ['Republican', 'Democratic']#list of what each item stands for
    for billTitle in billTitleList:#fill up itemMeaning list
        itemMeaning.append('%s -- Nay' % billTitle)
        itemMeaning.append('%s -- Yea' % billTitle)
    transDict = {}#list of items in each transaction (politician) 
    voteCount = 2
    for actionId in actionIdList:
        sleep(3)
        print 'getting votes for actionId: %d' % actionId
        try:
            voteList = votesmart.votes.getBillActionVotes(actionId)
            for vote in voteList:
                if not transDict.has_key(vote.candidateName): 
                    transDict[vote.candidateName] = []
                    if vote.officeParties == 'Democratic':
                        transDict[vote.candidateName].append(1)
                    elif vote.officeParties == 'Republican':
                        transDict[vote.candidateName].append(0)
                if vote.action == 'Nay':
                    transDict[vote.candidateName].append(voteCount)
                elif vote.action == 'Yea':
                    transDict[vote.candidateName].append(voteCount + 1)
        except: 
            print "problem getting actionId: %d" % actionId
        voteCount += 2
    return transDict, itemMeaning

这些是书本上例子用到的代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值