python人脸识别代码

人脸识别是一个复杂的任务,通常需要使用专门的库,如OpenCV(结合深度学习模型,如dlib、face_recognition或深度学习框架如TensorFlow、PyTorch中的模型)。

下面是一个使用face_recognition库进行基本人脸识别的Python代码示例。请注意,face_recognition库本身是基于dlib库的。

import face_recognition  
import cv2  
  
# 加载一张包含人脸的图片  
image = face_recognition.load_image_file("your_image.jpg")  
  
# 使用默认的HOG模型来找到图片中的所有人脸  
face_locations = face_recognition.face_locations(image)  
  
# 打印出每个人脸的位置信息  
for face_location in face_locations:  
    top, right, bottom, left = face_location  
    print(f"A face is located at pixel location Top: {top}, Left: {left}, Bottom: {bottom}, Right: {right}")  
  
    # 你可以使用OpenCV在图像上绘制矩形来显示人脸的位置  
    cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)  
  
# 显示图像  
cv2.imshow("Image with faces", image)  
cv2.waitKey(0)

在这个示例中,我们加载了一张图片,并使用face_recognition.face_locations()函数来找到图片中所有的人脸。然后,我们打印出每个人脸的位置信息,并使用OpenCV在图像上绘制矩形来显示人脸的位置。最后,我们使用cv2.imshow()函数来显示图像。

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
可部署到云主机(Heroku,AWS……)! 使用dlib最先进的面部识别功能构建而成,具有深度学习功能。该模型在Wild标记的Labeled Faces中具有99.38%的准确度 。 这提供了一个简单的命令行工具,允许从命令行对图像文件夹进行面部识别! 1、找到图片中出现的所有面孔 2、获取每个人的眼睛,鼻子,嘴巴和下巴的位置和轮廓。 3、应用数字化妆 4、识别每张照片中出现的人物。 5、可以将此库与其他Python库一起使用来进行实时人脸识别。 使用要求 Python 3.3+或Python 2.7 macOS或Linux(Windows未正式支持,但可能有效) 人脸检测 在照片中找到面孔 在照片中找到面孔(使用深度学习) 使用GPU(使用深度学习)批量查找图像中的面孔 使用网络摄像头模糊实时视频中的所有人脸(需要安装OpenCV) 面部特征 识别照片中的特定面部特征 应用(可怕的丑陋)数字化妆 面部识别 根据已知人物的照片查找并识别照片中的未知面部 识别并在照片中的每个人周围绘制框 通过数字面部距离比较面部而不仅仅是真/假匹配 使用网络摄像头识别实时视频中的人脸 - 简单/慢速版本(需要安装OpenCV) 使用网络摄像头识别实时视频中的人脸 - 更快的版本(需要安装OpenCV) 识别视频文件中的面部并写出新的视频文件(需要安装OpenCV) 用相机识别Raspberry Pi上的脸部 运行Web服务以通过HTTP识别面部(需要安装Flask) 使用K近邻分类器识别面部

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值