卡方值计算

卡方值的计算公式是:X² = Σ (O-E)²/E,其中:

  • X² 是卡方值。
  • Σ 表示求和。
  • O 表示观察值,即实际观测到的频数。
  • E 表示期望值,也称理论频数,是在假设两个变量之间没有关联的情况下,根据总体频数和各个变量的边际频数计算得到的。

以一个简单的例子来说明这个计算过程:

假设有一组数据,表示两种推广方式(A和B)在不同时期(第一、第二、第三期)的销售量。

  • 推广方式A:第一期30个,第二期40个,第三期50个。
  • 推广方式B:第一期20个,第二期30个,第三期40个。

首先,计算每期的期望值(E)。期望值是按照两种推广方式的比例来计算的。例如,第一期的期望值 = 30(A的销售量)* 20(B的销售量) = 600。

然后,计算观察值(O)与期望值(E)的差值平方,再除以期望值,最后求和,即可得到卡方值。

  • X² = (30-600)²/600 + (40-1200)²/1200 + (50-2000)²/2000 = 8400/600 + 6400/1200 + 2500/2000 = 14

因此,这两种推广方式之间的卡方值为14。

请注意,卡方检验要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时,卡方值需要校正;当样本含量小于40时,只能用确切概率法计算概率。

要手动计算统计学中的方($\chi^2$)值,可以依照下面提供的公式和步骤来进行。 对于一个给定的列联表(也称为频数表),$\chi^2$检验用于评估两个分类变量之间是否存在显著关联。假设有一个$r \times c$大小的表格,其中$r$代表行的数量$c$代表列的数量,则可以通过下列方式来计算$\chi^2$值: $$\chi^2 = \sum_{i=1}^{r}\sum_{j=1}^{c}{(O_{ij}-E_{ij})^2 \over E_{ij}}$$ 这里, - $O_{ij}$表示观察次数(observed frequency),即实际观测到的数据; - $E_{ij}$表示期望次数(expected frequency),是在零假设成立的情况下预期出现的频率; 为了计算$\chi^2$值, 计算每个单元格的期望频率(E) 对于每一个单元格$(i,j)$,其期望频率可通过下述公式得出: $$E_{ij}= {(\text{第$i$行总和})(\text{第$j$列总和}) \over N }$$ 这里的N是样本总量,也就是整个表格中所有观察数值之和。 确定自由度(df) 自由度等于 (行数量减一) 乘以 (列数量减一): $$df=(r-1)(c-1)$$ 比较结果与临界值 一旦得到$\chi^2$值之后,需要将其同特定置信水平下的临界值相比较。这通常涉及到查表或者使用软件工具来找到对应于所选择的显着性水平(例如0.05)以及之前算出的自由度的临界值。 解释结论 如果计算出来的$\chi^2$大于临界值,则拒绝原假设,认为存在足够的证据表明两组数据不是独立的;反之则接受原假设,没有足够证据证明两者有关联。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值