【机器学习】如何判断算法的性能

本文探讨了如何判断机器学习算法的性能,通过将数据集划分为训练集和测试集,以测试数据进行预测。以sklearn库中的train_test_split方法为例,应用于KNN算法,通过计算预测结果的准确性来评估模型的表现。
摘要由CSDN通过智能技术生成

【机器学习】如何判断算法的性能

如何判断算法的性能

在这里插入图片描述
将原始数据分为两部分,一部分为训练数据,一部分为测试数据,让测试数据来经行预测,来判断训练出来的模型是怎样的。

在这里插入图片描述

测试我们算法实例:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn import datasets



iris = datasets.load_iris()
X = iris.data
y = iris.target
print(X.shape)
print(y.shape)
#将X分为训练集和测试数据集,不能盲目的吧X分类,需要将原有的排列好的数据进行乱序
shuffle_indexes = np.random.permutation(len(X))
test_ratio 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值