有代码注释便于理解
思路:自己构造一个数据集,知道真实的W和b,以及feature和labels,也就是线性回归模型中的X和y,通过线性回归算法进行模型训练,可以计算出W和b的估计误差。添加了很多注释,便于自己的理解。
# 在pycharm中是用不了%matplotlib inline的。
import random
import torch
# 数据可视化中 matplotlib.pyplot模块下的plot函数用于绘制2D图形
# d2l包可以直接在conda的prompt里面输入命令 pip install -U d2l 来安装
from d2l import torch as d2l
import matplotlib.pyplot as plt
# num 生成n个样本
# 此函数用于生成特征和label 特征指的是X label指的是y
def synthetic_data(w, b, num_examples): #@save
"""生成y=Xw+b+噪声"""
# 均值为0 方差为1
# normal:返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数
X = torch.normal(0, 1, (num_examples, len(w)))
# 偏差b
y = torch.matmul(X, w) + b
# 增加复杂度噪音,均值为0,方差为0.01,形状和Y相同
y += torch.normal(0, 0.01, y.shape)
# 说明以列向量返回 x是feature y是label
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
# 创建训练样本
# label:所预测的东西实际是什么,如线性回归中的y变量
#feature:事物的固有属性,可以理解为做出某个判断的依据,是机器学习模型中的输入变量,如X变量
# 本行代码表示feature=X,labels=y
features, labels = synthetic_data(true_w, true_b, 1000)
# labels是如何生成的
print('features:', features[0],'\nlabel:', labels[0])
# features: tensor([1.4632, 0.5511])
# label: tensor([5.2498])
d2l.set_figsize()
# 样本的每一列跟labels绘制图像 X和y的图像
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);
plt.show()
# 读取数据集
def data_iter(batch_size, features, labels):
num_examples = len(features)
# indilces 标号
indices = list(range(num_examples))
# 这些样本是随机读取的,没有特定的顺序
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
# 每间隔batch_size随机读取一个样本
batch_indices = torch.tensor(
indices[i: min(i + batch_size, num_examples)])
# 返回
#yield就是返回一个值,并且记住这个返回的位置,下次迭代就从这个位置开始
yield features[batch_indices], labels[batch_indices]
batch_size = 10
# x,y 是 features labels
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
# 模型参数定义 随机初始化 需要计算梯度
# torch.normal是pytorch中用于生成服从正态分布的随机数的函数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# X 是批量大小
# 回归算法
def linreg(X, w, b): #@save
"""线性回归模型"""
# def matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor:
# 两个张量矩阵相乘 X*w
return torch.matmul(X, w) + b
# 损失的计算
def squared_loss(y_hat, y): #@save
"""均方损失"""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
#"""小批量随机梯度下降"""
def sgd(params, lr, batch_size): #@save
with torch.no_grad():
# 遍历
for param in params:
# l.sum().backward()这个计算出了每个参数的梯度
param -= lr * param.grad / batch_size
# 因为pytorch不会自动将梯度设置为0,设置为零后下次计算就不会与上次相关了
param.grad.zero_()
# 学习率
lr = 0.03
# epochs 被定义为向前和向后传播中所有批次的单次训练迭代 简言之 训练过程中数据被轮多少次
num_epochs = 3
net = linreg
loss = squared_loss
# 训练过程
for epoch in range(num_epochs):
# batchs 参数更新按批进行 小批的梯度下降算法
for X, y in data_iter(batch_size, features, labels):
# w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
# b = torch.zeros(1, requires_grad=True)
l = loss(net(X, w, b), y) # X和y的小批量损失
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度 求和之后算梯度,因为前面显示的声明w和b是要计算梯度的,这里backward函数就会对w和b求导。
l.sum().backward()
# 使用参数的梯度更新参数
# def sgd(params, lr, batch_size): #@save
sgd([w, b], lr, batch_size)
with torch.no_grad():
# net函数 return torch.matmul(X, w) + b
# loss函数 return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
# def squared_loss(y_hat, y):
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')