目录
一、应用
1、内容推荐(微信朋友圈广告,短视频)
2、自动驾驶(百度起步较早)
3、人脸识别(无人售卖)
4、资源调度(规划路线,热点图)
二、起因
1、计算机、互联网发展
2、传统纸质数据转换为电子数据
3、数据量急速增长导致的一些问题
(1)数据过量,难以消化
(2)数据真假难以辨别
(3)数据安全难以保证
(4)数据形式不一致、难以统一处理
4、随之数据库技术的迅速发展,对于发现数据中存在的关系和规则以此来根据现有数据预测未来1发展趋势。

三、数据挖掘
1、什么是数据挖掘
从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据分析方法与处理大量数据的复杂算法相结合
广义:数据挖掘是从大量数据中挖掘有趣模式

本文介绍了数据挖掘的基本概念,包括其定义、过程、任务分类和在大数据背景下的发展。强调了数据挖掘在内容推荐、自动驾驶、人脸识别和资源调度等领域的应用,并概述了从数据预处理到结果解释的整个流程。同时,讨论了多学科融合的重要性,特别是在应对大数据挑战中的作用,如深度学习。最后,列举了多个数据挖掘的应用实例,如谷歌的传染源定位和Netflix的个性化推荐。
最低0.47元/天 解锁文章
1083

被折叠的 条评论
为什么被折叠?



