基于金融知识图谱的会计欺诈风险识别方法

本文提出了一种基于金融知识图谱的会计欺诈风险识别方法,通过图分析和知识挖掘技术提取账户关联风险特征,构建反欺诈策略体系。实验结果显示,该方法能大幅提升识别精准度,对高度可疑账户的识别精准度达到85%,提高了会计案件核查效率。
摘要由CSDN通过智能技术生成

点击上方蓝字关注我们

基于金融知识图谱的会计欺诈风险识别方法

陈强1, 代仕娅2

1 兴业银行信息科技部,上海 201201

2 蚂蚁科技国际事业群数据算法技术部,上海 200120

 

 摘要针对商业银行会计案件日益复杂且频发的问题,将会计案防领域的行业知识与金融知识图谱技术结合,以更精准地识别与防范商业银行会计风险。采用图分析、图挖掘等技术,提取深层关联风险特征,并与行业经验知识相结合,构建了249条单点规则及425条组合规则,形成了丰富、可灵活配置的反欺诈策略体系。将该智能化反欺诈方法应用于银行活期账户的风险排查,与传统规则策略相比,识别精准度大幅提升,且对于筛选出的高度可疑账户,识别精准度达到85%左右,极大提升了会计案件核查的效率。

关键词会计案防 ; 金融知识图谱 ; 反欺诈 ; 关联交易

论文引用格式:

陈强, 代仕娅. 基于金融知识图谱的会计欺诈风险识别方法[J]. 大数据, 2021, 7(3):116-129.

CHEN Q, DAI S Y. Recognition method of accounting fraud risk based on financial knowledge graph[J]. Big Data Research, 2021, 7(3): 116-129.


1 引言

商业银行会计风险案件形式多样,涵盖反洗钱、资金诈骗、非法集资、虚假交易、恶意刷单、套现挪用等多种作案手段。随着商业银行业务范围不断拓展,经济形势复杂性加剧,会计风险案件日趋高发,给商业银行及社会经济带来严重的损失,也给金融系统的稳定性造成不良影响。除了明确对反洗钱等金融犯罪行为的打击防范,监管对银行资金的使用规范也日益严格,如《商业银行互联网贷款管理暂行办法》明确表示,贷款资金不得用于购买房产、股票、金融衍生品等。加强对会计风险案件的防控是新形势下银行风险管理的重要内容,具有较大的经济效益和社会效益,一是能更好地保障客户资金的安全,切实做好维护客户利益的本职工作;二是有利于监测并规范信贷资金的用途,使其切实用于企业的经营发展,支持与服务实体经济;三是能增强反洗钱能力,防范金融犯罪,助力金融系统的稳定与社会经济健康发展。而现实中各类风险事件的作案手法越发复杂,内外部勾结、团伙合作等形式较难被及时察觉,传统事后核查方式的防范效率较低。这些都对银行传统的风险管理模式提出更严峻的挑战,需要借助新技术、新方法来更有效地应对。

近年来,金融科技蓬勃发展,驱动金融业务经营与管理模式的创新变革。中国人民银行印发的《金融科技(FinTech)发展规划(2019—2021年)》明确指出,金融科技已成为防范化解金融风险的新利器,是新形势下金融风险管理的内在需求和重要选择。金融科技在会计非现场监控工作中的应用能实现对会计异常数据的自动监控、自动预警、自动通知,有效提升会计监控的效率;基于大数据、人工智能技术的反欺诈智能平台能对海量金融交易进行监测,在降低异常交易预警的同时,极大地提高了识别欺诈交易的命中率。为此,商业银行积极探索大数据、人工智能、知识图谱等核心技术在会计案防领域的高效应用就显得格外必要。将传统的风险业务知识与大数据、人工智能技术结合,充分发挥数据模型在风险特征挖掘上的能力,构建更完善、更精准的智能化会计案件风险防控体系,能有效地提升银行的风险管理水平,推动银行的高质量发展。

本文引入知识图谱相关技术,提出了结合关联风险特征的会计案防智能化反欺诈策略体系构建方案。首先,构建了银行账户金融知识图谱,并采用多种图分析技术挖掘提炼账户之间的关联风险特征;其次,将关联风险特征与传统会计案防规则结合,形成完整的会计案防智能化反欺诈策略体系;最后,基于银行真实交易账户对反欺诈策略进行检验,检验结果表明,该智能化反欺诈策略体系能有效识别出高风险账户。

2 相关工作

作为人工智能的重要领域之一,知识图谱相关技术在金融反欺诈领域的应用日益广泛,对金融风险防范起到显著的促进作用。姜增明等人认为商业银行反欺诈的关键在于建立以大数据为支撑的风控体系,采用知识图谱、社交网络分析等技术,更有效地防范复杂模式下的欺诈风险。柴洪峰等人指出依托知识图谱强大的知识推理和逻辑判断能力,在提升风险监管决策准确性的同时,也能增强其可解释性。陶睿等人通过构建上市公司知识图谱,对企业风险进行智能化监控,提升了监管穿透性,缓解了监管时滞性;陶士贵等人基于股权关系图谱,采用复杂股权关系路径算法,有效识别企业的最终受益人,实现反洗钱风险的预警提示。上述文章主要侧重于从企业控制人角度出发,采用知识图谱挖掘股权关系中的风险,但这些文章均仅描述了研究思路,并未就具体图计算过程和实验结果进行详细阐述。金磐石等人通过构建企业关联图谱,将企业画像特征与从知识图谱中提取的企业关系特征结合,并将其作为分类模型的变量输入,预测小微企业欺诈的概率;王成等人采用知识图谱的网络嵌入方法预测互联网借贷的欺诈行为,将网络中的节点嵌入低维的向量空间,以自动学习网络中隐含的关联关系,增强了欺诈预测的性能。这两篇文章主要将知识图谱与AI算法结合,通过算法模型预测信贷业务中的欺诈风险,但对于会计案防业务来说,这种方法不仅欺诈样本比例较低,影响模型训练效果,而且对案件发生逻辑的分析要求高,完全采用机器学习模型预测欺诈缺乏相应的可解释性。凡友荣等人基于电信通话知识图谱,通过最短路径算法、PageRank算法、聚类算法等识别电信通话中的关联路径、核心人物及社会关系,为电信资金诈骗的识别提供重要线索;魏瑾等人搭建了基于知识图谱的欺诈电话智能决策平台,提升了电信诈骗识别的准确率。这两篇文章采用知识图谱技术提取个人之间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值