风力发电企业设备通过SCADA对风电机组进行数据采集,有效利用现有海量的SCADA 数据是所有风电研究者面临的挑战。国家能源集团联合动力技术有限公司利用数字章生技 术深入研究基于SCADA数据的机组状态参数之间的相关关系,挖掘SCADA数据包含的有用 信息是开展风电机组的故障诊断、状态评估的研究工作的重要基础,对于提升风电机组全 生命周期管理水平起关键作用。
方案介绍:
国家能源集团联合动力技术有限公司数字章生解决方案提取并分析运行数据,总结风 电机组运行状态的发展演化规律,充分利用物理模型、运行历史等数据,集成多学科、多物 理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,来搭建风电机组的运行机理模 型,研究异常工况的演化规律和致障机理,将待诊断信号的特征与已知故障模式进行比对, 再利用数据匹配与聚类算法,根据匹配相似度判断待诊断信号的属性,并推导基于机理模 型的运行状态预测方法。
图 风电机组数字挛生
在性能优化方面,利用实际风况条件、实际运行工况以及SCADA数据跟踪风电机组表 现,预测机组运行状态,有效的增加发电量,降低机组载荷、优化运维。在风电场优化方面, 充分考虑发电量、机组寿命、电能质量、维护计划等多方面因素对风电场的影响以减轻风电 对电网造成不利影响,提高风力发电的市场竞争力。在风电机组故障预测方面,提前发现故 障征兆,使得工作人员能够提前确定维护方案和维护时间,避免和减轻严重的设备损坏,缩 短维护时间,降低维护成本,提高风电机组运行的经济性。风电机组寿命评估方面,利用实 际风况条件(如湍流、风切变、流入角度、空气密度)、实际运行工况(如瞬变次数、偏航不 对中、长期停机工况、覆冰载荷)以及其他超岀部件设计边界条件工况来确定机组各自的状 态,利用累积疲劳载荷准确判断风电机组的实际使用寿命。
应用成效:
基于数字挛生技术与大数据分析技术,通过数字仿真,风电机组全生命周期管理水平 得以提升,主要体现在以下方面:
有效降低机组载荷,延长机组寿命,增加发电量,提高风电运营效益,提高风电机 组的市场竞争力。
优化运维策略,实现风电机组预防性维修,降低故障率,降低重大故障发生率。
缩短维护时间20%,降低维护成本约10%,提高风电机组运行的经济性。
提高风电机组对电网的适应和支撑作用,保障电网稳定,减少对电网的冲击。