风力发电机组价格高昂,其核心部件损坏将严重影响发电企业的经济效益。青岛赛普 克有限元科技发展有限公司开发的风电系统数字章生解决方案可在运行维护阶段建立风力 发电机组的数字章生系统,在风机传感器数据和运行历史数据的驱动下,实现风力发电机组 的集中监测与性能评估。通过章生系统的模型驱动,实现风力发电机组的早期故障预警和 健康管理,从而对风机设备进行精准运维,降低风机大故障发生率、故障停机损失和故障 维修成本。
方案介绍:
青岛赛普克风电系统数字章生解决方案综合了领先的机器学习算法同时首次引入了快速 仿真解决方案,使用多种领先技术综合的解决风机故障检测难题,在技术上具备先进性。
该解决方案涵盖三个部分:数据采集模块、数据传输模块和数字章生平台模块。当被 监测风电设备运动时,系统将传感器检测信号映射到数字章生模型中,数字章生模型随真实 设备一起运动,并实时计算岀应力、位移等仿真分析结果;当被监测风电设备受到的载荷发 生变化时,系统同样将变化的载荷信息传递给数字章生模型,实时计算得到加载后的仿真 分析结果;当被监测风电设备受到的载荷超岀预设的阈值后,系统会自动报警提示,避免设备在危险工况中运行,輦来不必琢强攝矢。
风电数据从感知、采集、传输、存储、处理到应用的整个生命周期过程中,各个阶段的 关键技术构成了风电系统数字章生体系架构的技术支撑。
智能传感器技术悬蹒指准感知的基本硬群保证;风机数据精准标准化采集技木是讦 估评估风机健康状态的保证;快速有效的数据存储策略是风电系统数字章生数据高效传输 的可靠保障;采集数据到仿真模型的精准映射,是风电系统数字章生精准分析的数据质量 保证。而基于机器学习的快速仿真计算技术,是风电系统数字章生系架构的核心特征,也是 适应不同外部环境,实现真实物理模型数字化的有力保证。
应用成效:
该解决方案可以应用在包括陆上风电、海上风电等各类风电设施,有效解决设计优化、 设备智能化运维等一系列问题。
- 实现了基于模态数据的方法、基于静态参数的方法、基于机电阻抗的方法、基于导 波的方法依据叶片破损后的物理指标变化来监控叶片的损伤情况
- 使用先验匹配滤波和数据驱动智能学习两种方法实现风电齿轮箱的故障诊断。
- 借助振动、电流、温度等信号进行分析,借助工业机理模型,实现风力发电机的故 障诊断。