64-OpenCVSharp 创建实现Halcon的Threshold算子(用于阈值分割高性能实现)

以下是一个高性能的Threshold实现,支持Halcon式多区间阈值分割,并结合OpenCV特性进行深度优化:

using OpenCvSharp;
using System;
using System.Collections.Generic;

public static class HalconThreshold
{
   
    /// <summary>
    /// 增强型阈值分割(模拟Halcon Threshold功能)
    /// </summary>
    /// <param name="src">输入图像(自动处理8UC1/8UC3/32FC1)</param>
    /// <param name="ranges">阈值区间列表(支持多区间)</param>
    /// <param name="outputType">输出模式:0-二值图像模式,1-轮廓集合模式</param>
    /// <param name="autoScale">是否自动归一化浮点图像(默认true)</param>
    /// <returns>根据outputType返回Mat或List<Point[][]></returns>
    public static object Threshold(
        Mat src,
        IEnumerable<Tuple<double, double>> ranges,
        int outputType = 0,
        bool autoScale = true)
    {
   
        // =============== 预处理阶段 ===============
        Mat processed = PreprocessImage(src, autoScale);
      
        // =============== 核心阈值处理 ===============
        List<Mat> regions = ExecuteMultiThreshold(processed, ranges);

        // =============== 结果转换 ===============
        return outputType switch
        {
   
            0 => MergeBinaryMasks(regions),    // 二值图像模式
            1 => ExtractAllContours(regions), // 轮廓模式
            _ => throw new ArgumentException("不支持的输出模式")
        };
    }

    #region 核心实现
  
    // 图像预处理(自动通道转换+归一化)
    private static Mat PreprocessImage(Mat src, bool autoScale)
    {
   
        Mat output = new Mat();
      
        // 通道处理
        if (src.Channels() == 3) // 自动转换彩色图像为灰度
        {
   
            Cv2.CvtColor(src, output, ColorConversionCodes.BGR2GRAY);
        }
        else if(src.Type().Channels == 1)
        {
   
            output = src.Clone();
        }

        // 浮点归一化
        if(autoScale && output.Depth() == MatType.CV_32F)
        {
   
            double minVal = 0, maxVal = 0;
            Cv2.MinMaxLoc(output, out minVal, out maxVal);
            output.ConvertTo(output, MatType.CV_8UC1, 255.0/(maxVal - minVal), -minVal*255.0/(maxVal - minVal));
        }

        return output;
    }

    // 并行多区间阈值处理
    private static List<Mat> ExecuteMultiThreshold(Mat src, IEnumerable<Tuple<double, double>> ranges)
    {
   
        var regions = new List<Mat>();
        byte[] lut = new byte[256]; // LUT优化缓存

        foreach (var range in ranges)
        {
   
            <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观视界

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值