算法在时间和空间上的复杂度

算法时间复杂度

算法时间复杂度定义:

        在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写 O() 来体现算法时间复杂度的记法,我们称之为大O记法
一般情况下,随着n的增大,T(n) 增长最慢的算法为最优算法。
显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n^2)。我们分别给它们取了非官方的名称,O(1) 叫常数阶、 O(n) 叫线性阶、 O(n ^2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行次数函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。
    (得到的结果就是大O阶。)
常数阶

        首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法(高斯算
法) ,为什么时间复杂度不是 0(3) .而是O(1)。

int sum=0,n=100;            /*执行一次*/
sum=(1+n)*n/2;             /*执行一次*/
printf("%d",sum);         /*执行一次*/

这个算法的运行次数函数是f(n)=3。根本我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度O(1)
另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,
即:

int sum=0,n=100;        /*执行1次*/
sum=(1+n)*n/2;          /*执行第1次*/
sum=(1+n)*n/2;          /*执行第2次*/
sum=(1+n)*n/2;          /*执行第3次*/
sum=(1+n)*n/2;          /*执行第4次*/
sum=(1+n)*n/2;          /*执行第5次*/
sum=(1+n)*n/2;          /*执行第6次*/
sum=(1+n)*n/2;          /*执行第7次*/
sum=(1+n)*n/2;          /*执行第8次*/
sum=(1+n)*n/2;          /*执行第9次*/
sum=(1+n)*n/2;          /*执行第10次*/
printf("%d",sum);       /*执行1次*/

事实上无论n为多少,上面的两段代码就是3次和12次执行的差异。这种与问题的大小无关(n 的多少) ,执行时间恒定的算法,我们称之为具有 O(1) 的时间复杂度,又叫常数阶。
注意:不管这个常数是多少,我们都记作 O(1),而不能是 0(3)、 0(12) 等其他任何数字,这是初学者常常犯的错误。
对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中) ,其时间复杂度也是0(1)。

线性阶

        线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
下面这段代码,它的循环的时间复杂度为 O(n) ,因为循环体中的代码须要执行n次。

int i;
for (i=0;i<n;i++)
{
	/*时间复杂度为O(1)的程序步骤序列*/
}
对数阶

下面的这段代码,时间复杂度又是多少呢?

int count=i;
while(count<n)
{
	count=count*2;
	/*时间复杂度为O(1)的程序步骤序列*/
}

        由于每次 count 乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环 。由2^x=n 得到x=log(2)n。所以这个循环的时间复杂度为
O(logn)。

平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

int i,j;
for(i=0;i<n;i++)
{
	for(j=0;j<n;j++)
	{
		/*时间复杂度为O(1)的程序步骤序列*/
	}
}

    而对于外层的循环,不过是内部这个时间复杂度为 O(n) 的语句,再循环n次。所以这段代码的时间复杂度 O(n^2)。
    如果外循环的循环次数改为了m,时间复杂度就变为O(m Xn)。

int i,j;
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
	/*时间复杂度为O(1)的程序步骤序列*/
	}
}

    所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
    那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i,j;
for(i=0;i<n;i++)
{
	for (j=i;j<n;j++) /*注意j=i而不是0*/
	{
	/*时间复杂度为O(1)的程序步骤序列*/
	}
}

        由于当i=0时,内循环执行了n次,当i=1时,执行了n-1次,……当i=n-1时,执行了1次。所以总的执行次数为:
n^2/2+n/2
        用我们推导大O阶的方法,第一条,没有加法常数不予考虑 ;第二条,只保留最高阶项,因此保留时n^2/2; 第三条,去除这个项相乘的常数,也就是去除 1/2 ,最终这段代码的时间复杂度为 O(n^2)

最坏情况与平均情况

        最坏情况运行时间是一种保证,那就是运行时间将不会再坏了。在应用中,这是一种最重要的需求,通常,除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

        平均运行时间是所有情况中最有意义的,因为它是期望的运行时间。

算法的空间复杂度

        算法的空间复杂度通过计算机算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值