【DL】详解RNN(附数学推导+变式)

还在看数学公式学习了解RNN?out了吧!

神经网络基础

神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下:
在这里插入图片描述

将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?

为什么需要RNN(循环神经网络)

他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。
以nlp的一个最简单词性标注任务来说,将我 吃 苹果 三个单词标注词性为 我/nn 吃/v 苹果/nn。

那么这个任务的输入就是:

我 吃 苹果 (已经分词好的句子)

这个任务的输出是:

我/nn 吃/v 苹果/nn(词性标注好的句子)

对于这个任务来说,我们当然可以直接用普通的神经网络来做,给网络的训练数据格式了就是

我-> 我/nn 这样的多个单独的单词->词性标注好的单词。

但是很明显,一个句子中,前一个单词其实对于当前单词的词性预测是有很大影响的,比如预测苹果的时候,由于前面的吃是一个动词,那么很显然苹果作为名词的概率就会远大于动词的概率,因为动词后面接名词很常见,而动词后面接动词很少见。

所以为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就诞生了。

定义

RNN(Recurrent Neural Network)是一类用于处理序列数据的神经网络。首先我们要明确什么是序列数据,摘取百度百科词条:时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。这是时间序列数据的定义,当然这里也可以不是时间,比如文字序列,但总归序列数据有一个特点——后面的数据跟前面的数据有关系。

RNN的结构及变体

我们从基础的神经网络中知道,神经网络包含输入层、隐层、输出层,通过激活函数控制输出,层与层之间通过权值连接。激活函数是事先确定好的,那么神经网络模型通过训练“学“到的东西就蕴含在“权值“中。
基础的神经网络只在层与层之间建立了权连接,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。如图。
在这里插入图片描述

这是一个标准的RNN结构图,图中每个箭头代表做一次变换,也就是说箭头连接带有权值。左侧是折叠起来的样子,右侧是展开的样子,左侧中h旁边的箭头代表此结构中的“循环“体现在隐层。
在展开结构中我们可以观察到,在标准的RNN结构中,隐层的神经元之间也是带有权值的。也就是说,随着序列的不断推进,前面的隐层将会影响后面的隐层。图中O代表输出,y代表样本给出的确定值,L代表损失函数,我们可以看到,“损失“也是随着序列的推荐而不断积累的。
除上述特点之外,标准RNN的还有以下特点:
1、权值共享,图中的W全是相同的,U和V也一样。
2、每一个输入值都只与它本身的那条路线建立权连接,不会和别的神经元连接。

以上是RNN的标准结构,然而在实际中这一种结构并不能解决所有问题,例如我们输入为一串文字,输出为分类类别,那么输出就不需要一个序列,只需要单个输出。如图。
在这里插入图片描述
同样的,我们有时候还需要单输入但是输出为序列的情况。那么就可以使用如下结构:在这里插入图片描述
还有一种结构是输入虽是序列,但不随着序列变化,就可以使用如下结构:在这里插入图片描述

除了以上这些结构以外RNN还有很多种结构,用于应对不同的需求和解决不同的问题。还想继续了解可以看一下下面这个博客,里面又介绍了几种不同的结构。但相同的是循环神经网络除了拥有神经网络都有的一些共性元素之外,它总要在一个地方体现出“循环“,而根据“循环“体现方式的不同和输入输出的变化就形成了多种RNN结构。
RNN 循环 NN 神经网络 基本结构类型

标准RNN的前向输出流程

上面介绍了RNN有很多变种,但其数学推导过程其实都是大同小异。这里就介绍一下标准结构的RNN的前向传播过程。

在这里插入图片描述
再来介绍一下各个符号的含义:x是输入,h是隐层单元,o为输出,L为损失函数,y为训练集的标签。这些元素右上角带的t代表t时刻的状态,其中需要注意的是,因策单元h在t时刻的表现不仅由此刻的输入决定,还受t时刻之前时刻的影响。V、W、U是权值,同一类型的权连接权值相同。

有了上面的理解,前向传播算法其实非常简单,对于t时刻:
在这里插入图片描述

RNN的训练方法——BPTT

BPTT(back-propagation through time)算法是常用的训练RNN的方法,其实本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播。BPTT的中心思想和BP算法相同,沿着需要优化的参数的负梯度方向不断寻找更优的点直至收敛。综上所述,BPTT算法本质还是BP算法,BP算法本质还是梯度下降法,那么求各个参数的梯度便成了此算法的核心。
在这里插入图片描述
再次拿出这个结构图观察,需要寻优的参数有三个,分别是U、V、W。与BP算法不同的是,其中W和U两个参数的寻优过程需要追溯之前的历史数据,参数V相对简单只需关注目前,那么我们就来先求解参数V的偏导数。
在这里插入图片描述
这个式子看起来简单但是求解起来很容易出错,因为其中嵌套着激活函数函数,是复合函数的求道过程。

RNN的损失也是会随着时间累加的,所以不能只求t时刻的偏导。
在这里插入图片描述
W和U的偏导的求解由于需要涉及到历史数据,其偏导求起来相对复杂,我们先假设只有三个时刻,那么在第三个时刻 L对W的偏导数为:
在这里插入图片描述
相应的,L在第三个时刻对U的偏导数为:

在这里插入图片描述
可以观察到,在某个时刻的对W或是U的偏导数,需要追溯这个时刻之前所有时刻的信息,这还仅仅是一个时刻的偏导数,上面说过损失也是会累加的,那么整个损失函数对W和U的偏导数将会非常繁琐。虽然如此但好在规律还是有迹可循,我们根据上面两个式子可以写出L在t时刻对W和U偏导数的通式:
在这里插入图片描述
整体的偏导公式就是将其按时刻再一一加起来。

前面说过激活函数是嵌套在里面的,如果我们把激活函数放进去,拿出中间累乘的那部分:
在这里插入图片描述
我们会发现累乘会导致激活函数导数的累乘,进而会导致“梯度消失“和“梯度爆炸“现象的发生。

至于为什么,我们先来看看这两个激活函数的图像。
这是sigmoid函数的函数图和导数图。
在这里插入图片描述
这是tanh函数的函数图和导数图。
在这里插入图片描述
它们二者是何其的相似,都把输出压缩在了一个范围之内。他们的导数图像也非常相近,我们可以从中观察到,sigmoid函数的导数范围是(0,0.25],tanh函数的导数范围是(0,1],他们的导数最大都不大于1。

这就会导致一个问题,在上面式子累乘的过程中,如果取sigmoid函数作为激活函数的话,那么必然是一堆小数在做乘法,结果就是越乘越小。随着时间序列的不断深入,小数的累乘就会导致梯度越来越小直到接近于0,这就是“梯度消失“现象。其实RNN的时间序列与深层神经网络很像,在较为深层的神经网络中使用sigmoid函数做激活函数也会导致反向传播时梯度消失,梯度消失就意味消失那一层的参数再也不更新,那么那一层隐层就变成了单纯的映射层,毫无意义了,所以在深层神经网络中,有时候多加神经元数量可能会比多家深度好。

你可能会提出异议,RNN明明与深层神经网络不同,RNN的参数都是共享的,而且某时刻的梯度是此时刻和之前时刻的累加,即使传不到最深处那浅层也是有梯度的。这当然是对的,但如果我们根据有限层的梯度来更新更多层的共享的参数一定会出现问题的,因为将有限的信息来作为寻优根据必定不会找到所有信息的最优解。

之前说过我们多用tanh函数作为激活函数,那tanh函数的导数最大也才1啊,而且又不可能所有值都取到1,那相当于还是一堆小数在累乘,还是会出现“梯度消失“,那为什么还要用它做激活函数呢?原因是tanh函数相对于sigmoid函数来说梯度较大,收敛速度更快且引起梯度消失更慢。

还有一个原因是sigmoid函数还有一个缺点,Sigmoid函数输出不是零中心对称。sigmoid的输出均大于0,这就使得输出不是0均值,称为偏移现象,这将导致后一层的神经元将上一层输出的非0均值的信号作为输入。关于原点对称的输入和中心对称的输出,网络会收敛地更好。

RNN的特点本来就是能“追根溯源“利用历史数据,现在告诉我可利用的历史数据竟然是有限的,这就令人非常难受,解决“梯度消失“是非常必要的。解决“梯度消失“的方法主要有:
1、选取更好的激活函数
2、改变传播结构

关于第一点,一般选用ReLU函数作为激活函数,ReLU函数的图像为:
在这里插入图片描述
ReLU函数的左侧导数为0,右侧导数恒为1,这就避免了“梯度消失“的发生。但恒为1的导数容易导致“梯度爆炸“,但设定合适的阈值可以解决这个问题。还有一点就是如果左侧横为0的导数有可能导致把神经元学死,不过设置合适的步长(学习旅)也可以有效避免这个问题的发生。

关于第二点,LSTM结构可以解决这个问题。

总结一下,sigmoid函数的缺点:
1、导数值范围为(0,0.25],反向传播时会导致“梯度消失“。tanh函数导数值范围更大,相对好一点。
2、sigmoid函数不是0中心对称,tanh函数是,可以使网络收敛的更好。

!!!下一篇将着重介绍LSTM结构及一些变式

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值