stable diffusion参数说明

本文详细介绍了AI绘画中的关键参数,如采样方法(Euler、DPM+2M、DPM+SDE)、高清修复、放大算法(R-ESRGAN4x+ANIME6B)、分辨率控制、提示词相关性、采样步数、Lora模型使用以及生成批次设置。提供新手如何优化这些设置以获得理想效果的建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采样方法

没有优劣之分,速度不一样。一般Euler a、DPM++ 2M Karras、DPM++SDE Karras, 漫画一般选择DPM++ 2M Karras

高清修复

一般勾选。

放大算法

一般选择R-ESRGAN 4x+ ANIME6B

宽度、高度

控制图片的分辨率,根据选择的大模型的训练集尺寸选择,一般为64的倍数
在这里插入图片描述

提示词相关性

一般选择7~10

采样迭代步数

代表这幅画画了多少笔,一般50以内,推荐28

Lora模型使用

将光标放在提示词框,点击Lora模型,提示词框生成的字符串中<……1>1代表权重,一般设置为0.5~0.8之间,Lora模型可以多个一起用

生成批次

默认情况下,每批数量为1,通过该参数控制生成图片的数量。生成图片数量=生成批次*每批数量。

每批数量

一般设为1,大于1时占用显存较多。显卡比3090强时可选。可一次生成多张图片

提示词相关性

该参数越小,AI自由发挥的空间越大,与提示词偏离越远

随机种子

默认-1,即每次生图时使用的种子都是不同的。

补充

  1. 想生成大图,分辨率调小+启用高清修复

参考资料

【AI绘画】一张图看懂新手入门文生图如何使用

### Stable Diffusion 运行参数配置及设置方法 为了确保Stable Diffusion能够高效稳定地运行,在实际操作过程中合理配置其运行参数至关重要。这不仅有助于提升模型的执行效率,还能有效降低资源消耗并改善最终图像的质量。 #### 配置环境与准备阶段 在开始之前,需先完成基础环境搭建[^4]。此步骤涉及从GitHub仓库克隆项目至本地,并将预先下载好的模型文件放置于指定路径下(通常是`stable-diffusion-webui/models`)。此外,还需注意安装所有必需的依赖库和服务端口开放等问题。 #### 修改启动脚本中的命令行参数 对于Windows用户而言,可以通过编辑位于`stable-diffusion-webui/`目录下的`webui-user.bat`批处理文件来调整具体的运行参数。打开该文件后找到名为`COMMANDLINE_ARGS`的变量定义位置,依据个人电脑的具体规格对其进行适当修改: ```batch set COMMANDLINE_ARGS=--lowvram --no-half-vae --precision full --xformers --opt-sdp-attention --disable-safe-unpickle --api --listen --port 7860 ``` 上述示例展示了如何针对低内存设备优化性能的一些常用选项组合。其中包含了几个重要的标志位解释如下: - `--medvram`: 启用中等VRAM模式,适用于具有4GB~8GB显存大小的情况; - `--lowvram`: 开启极低VRAM支持,适合只有2GB甚至更低容量GPU的情形; - `--no-half-vae`: 关闭VAE半精度计算,默认开启状态下可能会导致某些老旧硬件出现问题; - `--precision full`: 设置浮点数运算精度为全精度而非混合或半精确实现更好兼容性的同时牺牲一定速度; - `--xformers`: 利用XFormers加速注意力机制层间的交互过程,通常能带来显著提速效果但也可能增加额外开销; - `--opt-sdp-attention`: 应用于自回归解码器内部的一种特殊形式的稀疏门控机制,旨在进一步加快推理时间而不明显影响画质; - `--disable-safe-unpickle`: 禁止安全反序列化功能防止潜在的安全风险但同时也关闭了一些保护措施; - `--api`: 提供RESTful API接口便于外部调用集成开发; - `--listen`: 让服务器监听来自网络上的请求而不是仅仅局限于localhost访问; - `--port 7860`: 自定义HTTP服务监听端口号以便与其他应用共存时不发生冲突。 #### 调整其他高级特性 除了上述基本设定外,还有更多可供探索的功能可以帮助微调整个系统的运作状况。例如启用CUDA多线程调度(`--cuda-threads`)、控制最大缓存尺寸(`--max-cache-size`)等都可以根据实际情况灵活运用以达到最优状态[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值