计算智能 — 蚁群算法

本文介绍了蚁群算法的基本原理和流程,通过实验分析了alpha、beta和rho三个参数对求解旅行商问题(TSP)的影响。实验表明,参数的选择直接影响算法的搜索范围和收敛速度,最佳参数组合为alpha=1, beta=5, rho=0.1。" 124143205,8723801,Java实现Double类型保留小数位方法总结,"['java', '数值处理', '数据转换']
摘要由CSDN通过智能技术生成

蚁群算法

蚁群算法是一种用来寻找优化路径的概率型算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。
一. 基本原理
  • 在研究蚂蚁觅食行为过程中,人们发现,尽管单只蚂蚁的能力十分有限,但整个蚁群却在觅食过程中可以发现从蚁巢到食物源的最短路径。
    在觅食过程中,蚂蚁通过“媒介质”来协调它们之间的行动。所谓“媒介质”指的是一种以环境的变化为媒介的间接通信方式。蚂蚁在寻找食物时,以其产生的被称为信息素的化学物质作为媒介而间接的传递信息。当蚂蚁从蚁穴走到食物源,从而形成了含有信息素的路径。
  • 蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法:蚂蚁在运动过程中,能够在它所经过的路 径上留下信息素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向。
  • 由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈 现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
二. 算法流程
  • 在ACO算法中,人工蚂蚁实际上代表的是一个解的随机构建过程,从最初的空解开始,通过不断地向部分解添加解的成分而构建出一个完整的解。
  • AS算法对TSP的求解主要有两大步骤:
  1. 路径构建
  2. 信息素更新
三. 实验分析

alpha —— 信息素重要程度因子
beta —— 启发函数重要程度因子
rho —— 信息素挥发因子

改变因子的大小:

1. beta、rho不变,alpha发生变化

alpha = 0.1,beta = 5,rho = 0.1:

最短距离:25119.2698
最短路径:4 14 39 15 1 44 27 3 5 13 32 42 31 28 22 21 24 35 10 11 26 16 43 7 41 19 47 33 46 49 29 25 45 18 30 50 17 37 6 2 38 40 34 9 8 36 12 48 23 20 4
在这里插入图片描述

alpha = 1,beta = 5,rho = 0.1 :

最短距离:23965.9929
最短路径:21 22 28 31 42 13 32 3 5 27 44 15 1 4 14 39 20 23 48 12 36 8 9 34 40 6 2 38 17 37 50 30 18 35 24 16 11 26 43 41 7 19 47 33 46 49 29 25 10 45 21
在这里插入图片描述
alpha = 5,beta = 5,rho = 0.1 :

最短距离:23537.0522
最短路径:10 25 29 49 41 7 19 47 33 46 32 13 3 5 27 44 15 1 14 4 39 20 23 48 12 36 8 9 34 40 6 2 38 17 37 50 21 22 28 31 42 43 26 11 16 30 18 35 24 45 10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值