Metal & Metamaterial optics
表面等离子体激元(Surface Plasmon Polariton, SPP)
表面等离子体激元(Surface Plasmon Polaritons, SPPs)是在金属-介电边界处传播的光波导波。这种现象在金属与介电材料的交界面上产生,使光波沿着该边界传播。具体特点包括:
-
高度局限于边界附近
- SPPs具有高度局限性,光波被限制在金属-介电界面的极近处。这种局限性使得SPPs可以在亚波长尺度上操作光波。
-
电荷密度纵波
- SPPs不仅是光波的传播,还涉及相同频率的电荷密度纵波(即等离子波)。这些波在金属表面形成,通过激发金属自由电子的集体振荡产生。
-
局部场强度显著增加
- SPPs的另一个重要特点是局部场强度的显著增加。由于光波被高度局限在边界附近,其电磁场强度会大幅提升,从而产生更强的局部场效应。
-
生物传感应用
- 由于其高度敏感的局部场强度,SPPs在生物传感器领域有着广泛的应用。例如,SPPs可以用于检测生物分子与表面之间的相互作用,从而实现高灵敏度的生物传感。
图解分析
-
左图:SPP传播示意图
- 左侧的示意图展示了SPP在金属-介电边界的传播情况。红色波纹线表示电场分布(E),而黑色箭头表示磁场分布(Hy)。可以看出,电场主要集中在金属-介电边界附近,并沿着边界传播。
-
右图:场强度分布图
- 右侧的场强度分布图展示了电场(Ez)在金属和介电材料中的分布。可以看到,电场在介电材料(δd)和金属(δm)中的衰减程度不同。这种分布特点进一步强调了SPP波的局限性和高局部场强度。
局域表面等离子体(Localized Surface Plasmons, LSPs)
局域表面等离子体(Localized Surface Plasmons, LSPs)是在嵌入介电介质中的亚波长尺寸的金属结构边界上支持等离子体振荡的一种现象。LSPs具有以下几个关键特性:
-
共振现象
- LSPs通常在可见光或紫外光范围内发生共振。这意味着当入射光的频率与金属纳米结构的自然振荡频率相匹配时,会发生强烈的光-物质相互作用。
-
可见光中的强烈颜色
- 由于LSPs的共振效应,金属纳米结构会在可见光范围内显示出强烈的颜色。这种现象在吸收和散射光线时尤为显著。例如,中世纪的彩色玻璃就是通过掺入金属纳米颗粒来实现不同颜色的。
-
吸收和散射
- LSPs显著影响金属纳米颗粒的光学特性,导致强烈的光吸收和散射。这些特性使得LSPs在传感器和光学设备中具有重要应用。
图中展示了LSPs在纳米粒子表面的电场分布。可以看到,当电场(Electric Field)与纳米粒子相互作用时,会导致电子云(Electron Cloud)在粒子表面振荡。这个振荡是LSPs的核心机制,反映了金属纳米结构在电场中的响应。
不同的电容率(ε)和磁导率(μ)材料
电容率(ε)和磁导率(μ)特性
复数电容率(ε)的实部和虚部的物理意义
- 电容率的实部(Re{ε}) 表示材料的极化响应,决定了材料在电场下的位移和极化行为。
- 电容率的虚部(Im{ε}) 表示材料的能量损耗或增益,决定了材料如何吸收或放大电磁波的能量。
1. 电容率的实部(Re{ε})
公式:
ϵ = ϵ 0 ( 1 + χ ′ ) \epsilon = \epsilon_0 (1 + \chi') ϵ=ϵ0(1+χ′)
解释:
- ε:总电容率(复数)。
- ε₀:自由空间电容率,常数,约为8.854 × 10⁻¹² F/m。
- χ’:电容率的实部,称为电极化率(electric susceptibility)。
在这个公式中,电容率的实部(Re{ε})描述了材料在外加电场作用下的极化响应。这表示材料如何被极化,即内部电荷如何重新分布以对抗外部电场。具体来说:
- ε₀(1 + χ’) 表示在外部电场下,材料的电极化率对电场的响应。
- 当 χ’ > 0 时,材料被极化,并表现出比真空更高的电容率。
- 当 χ’ < 0 时,材料可能表现出不寻常的极化特性,如在一些特定的超材料中可能出现。
2. 电容率的虚部(Im{ε})
公式:
ϵ ′ ′ = ϵ 0 χ ′ ′ \epsilon'' = \epsilon_0 \chi'' ϵ′′=ϵ0χ′′
解释:
- ε’':电容率的虚部,也称为损耗因子(loss factor)。
- χ’':电容率的虚部,称为损耗极化率(loss susceptibility)。
这个公式描述了电容率的虚部(Im{ε}),它与材料的能量损耗或增益有关。具体来说:
- ε₀χ’’ 表示在交变电场下,材料的损耗特性。
- 当 χ’’ > 0 时,材料吸收电磁波的能量,表现为能量损耗。这种情况常见于导体和某些介质材料中。
- 当 χ’’ < 0 时,材料会对电磁波提供能量增益,这在某些有源材料或增益介质中可能出现。
磁导率(μ)为真实和正值
这一页的重点是讨论在磁导率(μ)为真实和正值的情况下,电容率(ε)的不同状态对波传播性质的影响。
1. 电容率(ε)为真实值
当电容率(ε)为真实值时:
- 无吸收或增益
- 在这种情况下,介质既不吸收能量也不增益能量。也就是说,电磁波在这种介质中传播时不会有能量损失或增加。
2. 电容率(ε)为复数值
当电容率(ε)为复数值时,情况会更加复杂,具体取决于其虚部(Im{ε})的符号:
-
吸收
- 如果Im{ε}(即ε″)为负值,则介质会吸收能量。此时,Re{ε}(即ε′)可以是正值或负值。
- 吸收情况的表达式如下:
- ϵ = ϵ 0 ( 1 + χ ′ ) \epsilon = \epsilon_0 (1 + \chi') ϵ=ϵ0(1+χ′)
- ϵ ′ ′ = ϵ 0 χ ′ ′ \epsilon'' = \epsilon_0 \chi'' ϵ′′=ϵ0χ′′
- 在这种情况下,复数电容率的虚部导致电磁波在介质中传播时能量被吸收,波的强度随传播距离衰减。
-
增益
- 如果Im{ε}(即ε″)为正值,则介质提供能量增益。此时,Re{ε}(即ε′)也可以是正值或负值。
- 增益情况的表达式与吸收情况类似,但虚部的符号相反:
- ϵ ′ ′ = ϵ 0 χ ′ ′ \epsilon'' = \epsilon_0 \chi'' ϵ′′=ϵ0χ′′
- 在这种情况下,复数电容率的虚部导致电磁波在介质中传播时能量增加,波的强度随传播距离增加。
电容率(ε)为真实和正值
当电容率(ε)为真实和正值时,磁导率(μ)的性质决定了波的传播特性:
- 电磁波的传播性质
- 磁导率(μ)决定了电磁波在介质中的传播行为。如果μ为正值,且ε也为正值,则介质通常是透明的,电磁波可以无损传播。
双正介质(DPS)、单负介质(SNG)和双负介质(DNG)分类
1. 双正介质(DPS: Double Positive Media)
- 定义: 双正介质是指电容率(ε)和磁导率(μ)均为正值的介质。
- 光学特性:
- 透明性: DPS介质通常是透明的,允许光线无障碍地通过。
- 正折射率: 这些介质具有正的折射率,这是传统光学材料的典型特征。
- 普通介电介质: 常见的介电材料如玻璃和水都属于DPS介质。
- 应用:
- DPS介质在日常光学器件中广泛应用,如透镜、窗户和光纤。
2. 单负介质(SNG: Single Negative Media)
- 定义: 单负介质是指电容率(ε)或磁导率(μ)中至少有一个为负值的介质。
- 光学特性:
- 不透明性: SNG介质通常是不透明的,光线无法直接通过。
- 支持光学表面波: 在与DPS材料的边界上,SNG介质可以支持光学表面波,这种波沿着边界传播,而不是穿透介质。
- 金属和铁氧体的特性:
- 金属在红外和可见光范围内表现出负电容率和正磁导率。
- 铁氧体在微波频率下表现出正电容率和负磁导率。
- 应用:
- SNG介质在电磁屏蔽和微波技术中有重要应用。
3. 双负介质(DNG: Double Negative Media)
- 定义: 双负介质是指电容率(ε)和磁导率(μ)均为负值的介质,也称为左手材料(left-handed media)。
- 光学特性:
- 透明性: 尽管DNG介质的电容率和磁导率均为负值,但它们依然可以是透明的。
- 负折射率: 这种介质具有负的折射率,意味着光线在这种介质中会以与普通介质相反的方向折射。
- 斯涅尔定律的反向: 在DPS-DNG边界上,斯涅尔定律导致负折射角。这种独特的性质使DNG介质在实现负折射和光学隐身中具有重要应用。
- 应用:
- DNG介质在光学隐身、超透镜和新型光学器件中具有潜在的应用。
DPS, SNG, DNG中的波传播
波矢定义
电磁波的基本方程:
k × H 0 = − ω ϵ E 0 \mathbf{k} \times \mathbf{H}_0 = -\omega \epsilon \mathbf{E}_0 k×H0=−ωϵE0
k × E 0 = ω μ H 0 \mathbf{k} \times \mathbf{E}_0 = \omega \mu \mathbf{H}_0 k×E0=ωμH0
波矢的定义:
k = ω ϵ μ k = \omega \sqrt{\epsilon \mu} k=ωϵμ
η = ω μ k = μ ϵ \eta = \frac{\omega \mu}{k} = \sqrt{\frac{\mu}{\epsilon}} η=kωμ=ϵμ
解释:
- k k k 是波矢的大小,表示波的传播常数。
- η \eta η 是介质的特性阻抗,表示电磁波在介质中的传播阻抗。
- 这些方程说明了波矢 k k k 和特性阻抗 η \eta η 是如何由介质的电磁性质决定的。
波矢的方向:
k \mathbf{k} k 垂直于 E \mathbf{E} E 和 H \mathbf{H} H 的平面,但其实际方向取决于 ϵ \epsilon ϵ 和 μ \mu μ 的符号。
解释:
- 波矢 k \mathbf{k} k 的方向决定了波的传播方向。
- 在SNG和DNG介质中,电容率( ϵ \epsilon ϵ)和磁导率( μ \mu μ)的符号可以改变波矢的方向,导致波的传播行为不同于普通介质。
复数波矢的定义:
k = β − j γ \mathbf{k} = \beta - j \gamma k=β−jγ
β − j γ = ω ϵ μ \beta - j \gamma = \omega \sqrt{\epsilon \mu} β−jγ=ωϵμ
解释:
- β \beta β 是波矢的实部,表示传播常数。
- γ \gamma γ 是波矢的虚部,表示衰减常数。
- 复数波矢 k \mathbf{k} k 包含了传播和衰减两部分信息,描述了波在介质中的传播和能量损耗特性。
DPS, SNG, DNG波传播相关参数
双正介质(DPS: Double Positive Medium)
- 定义: 双正介质是指电容率( ϵ \epsilon ϵ)和磁导率( μ \mu μ)均为正值的介质。
- 右手系统: 在这种介质中,波矢 k \mathbf{k} k 和阻抗 η \eta η 都是实数。
- k = ω ϵ μ k = \omega \sqrt{\epsilon \mu} k=ωϵμ
- η = ω μ k = μ ϵ \eta = \frac{\omega \mu}{k} = \sqrt{\frac{\mu}{\epsilon}} η=kωμ=ϵμ
- 传播特性: 在DPS介质中,电磁波可以正常传播,且没有显著的衰减。
单负介质(SNG: Single Negative Medium)
- 定义: 单负介质是指电容率( ϵ \epsilon ϵ)或磁导率( μ \mu μ)中至少有一个为负值的介质。
- 波矢和阻抗均为虚数:
- 由于 ϵ \epsilon ϵ 或 μ \mu μ 为负值,波矢 k \mathbf{k} k 和阻抗 η \eta η 都变为虚数。
- γ = ω ∣ ϵ ∣ ∣ μ ∣ \gamma = \omega \sqrt{|\epsilon||\mu|} γ=ω∣ϵ∣∣μ∣
- β = 0 \beta = 0 β=0
- η = j ∣ μ ∣ ∣ ϵ ∣ \eta = j \sqrt{\frac{|\mu|}{|\epsilon|}} η=j∣ϵ∣∣μ∣
解释:
- 当 β = 0 \beta = 0 β=0 时,单负介质不支持传播波,只有衰减波。
- 波的场强度随传播距离 z z z 指数衰减:
- exp ( − γ z ) \exp(-\gamma z) exp(−γz)
- 单负介质的典型表现是波的快速衰减,不支持长距离传播。
特性1:穿透深度或皮肤深度(Penetration depth or skin depth)
公式:
d p = 1 2 γ = λ 0 4 π ϵ 0 ∣ ϵ ∣ ∣ μ ∣ μ 0 d_p = \frac{1}{2\gamma} = \frac{\lambda_0}{4\pi} \sqrt{\frac{\epsilon_0}{|\epsilon|} \frac{|\mu|}{\mu_0}} dp=2γ1=4πλ0∣ϵ∣ϵ0μ0∣μ∣
解释:
- 穿透深度 d p d_p dp 是光强衰减到原始强度的 e − 1 e^{-1} e−1 的深度。
- 该公式表示光在单负介质中的衰减深度,反映了波在介质中的渗透能力。
- 穿透深度与材料的电容率和磁导率有关,数值越小,表明介质对电磁波的吸收越强。
特性2:虚数阻抗(Imaginary impedance)
公式:
η : π 2 phase shift \eta: \frac{\pi}{2} \text{ phase shift} η:2π phase shift
解释:
- 虚数阻抗导致电磁波在介质中传播时发生 π / 2 \pi/2 π/2 相位移。
- 这种相位移是由于电磁波在单负介质中传播时的能量损耗和相位变化引起的。
双负介质(DNG: Double Negative Medium)
- 定义: 双负介质是指电容率( ϵ \epsilon ϵ)和磁导率( μ \mu μ)均为负值的介质。
- 在这种介质中,波矢和阻抗的表现如下:
1. 波矢和折射率
公式:
k = ω ∣ ϵ ∣ ∣ μ ∣ k = \omega \sqrt{|\epsilon||\mu|} k=ω∣ϵ∣∣μ∣
β = n k 0 \beta = n k_0 β=nk0
n = − ∣ ϵ ∣ ∣ μ ∣ ϵ 0 μ 0 n = -\sqrt{\frac{|\epsilon||\mu|}{\epsilon_0 \mu_0}} n=−ϵ0μ0∣ϵ∣∣μ∣
解释:
- 由于 ϵ \epsilon ϵ 和 μ \mu μ 均为负值,波矢的定义使用了它们的绝对值。
- β \beta β 是传播常数,表示波的传播方向和速率。
- n n n 是介质的折射率,由于 ϵ \epsilon ϵ 和 μ \mu μ 为负值,导致 n n n 也为负值,这种特性在传统介质中是没有的。
- 负折射率 n n n 导致电磁波在DNG介质中的传播方向与常规介质相反,称为负折射现象。
2. 阻抗
公式:
η = ∣ μ ∣ ∣ ϵ ∣ \eta = \sqrt{\frac{|\mu|}{|\epsilon|}} η=∣ϵ∣∣μ∣
解释:
- 阻抗 η \eta η 表示介质对电磁波传播的阻力。
- 在DNG介质中,阻抗的计算也基于 ϵ \epsilon ϵ 和 μ \mu μ 的绝对值。
3. 电磁场分量的方向关系
方程:
k × H 0 = ω ∣ ϵ ∣ E 0 \mathbf{k} \times \mathbf{H}_0 = \omega |\epsilon| \mathbf{E}_0 k×H0=ω∣ϵ∣E0
k × E 0 = − ω ∣ μ ∣ H 0 \mathbf{k} \times \mathbf{E}_0 = -\omega |\mu| \mathbf{H}_0 k×E0=−ω∣μ∣H0
解释:
- 这些方程描述了电场( E 0 \mathbf{E}_0 E0)和磁场( H 0 \mathbf{H}_0 H0)与波矢( k \mathbf{k} k)之间的关系。
- 在DNG介质中,电磁场分量的方向关系与传统介质不同,这意味着在这种介质中,电场和磁场的方向与波的传播方向发生了反转。
- 这种特性相当于交换了电场和磁场的角色,这也是负折射现象的重要特征。
左图:电磁波在不同介质边界上的相位变化
- 上半部分(红色箭头)表示当电磁波从折射率 n 1 n_1 n1 和波矢 k 1 k_1 k1 的介质进入另一个介质时,如果满足 n 1 k 1 d 1 > 0 n_1 k_1 d_1 > 0 n1k1d1>0,则相位会增大。
- 下半部分(蓝色箭头)表示当电磁波从折射率 n 2 n_2 n2 和波矢 k 2 k_2 k2 的介质进入另一个介质时,如果满足 n 2 k 2 d 2 < 0 n_2 k_2 d_2 < 0 n2k2d2<0,则相位会减小。
- 在正折射率介质中,相位通常会增大,而在负折射率介质中,相位会减小。这是因为负折射率介质会使电磁波的传播方向发生反转。
右图:电磁波的波形图
- 在双负介质中,电磁波的波长、频率和相位都会受到介质特性的影响。
- 由于双负介质的负折射率,波形的传播方向和相位变化会与传统介质不同,导致波形的传播路径发生反转。
克拉默斯-克罗尼关系(Kramers-Kronig Relations)
负折射率材料在实现负折射的同时,必然伴随着一定的能量损耗。
- 原理: 当电容率或磁导率的实部为负时,其虚部不能为零。
- 意义: 这意味着在具有负折射率的介质中,吸收是不可避免的。负折射率通常伴随着吸收现象。
波矢 k \mathbf{k} k 的定义为:
k = β − j γ \mathbf{k} = \beta - j \gamma k=β−jγ
其中, β \beta β 是传播常数,表示电磁波的相位传播速度; γ \gamma γ 是衰减常数,表示电磁波在介质中的能量损耗。
电容率 ϵ \epsilon ϵ 和磁导率 μ \mu μ 均为复数:
ϵ = ϵ ′ + j ϵ ′ ′ \epsilon = \epsilon' + j\epsilon'' ϵ=ϵ′+jϵ′′
μ = μ ′ + j μ ′ ′ \mu = \mu' + j\mu'' μ=μ′+jμ′′
其中, ϵ ′ \epsilon' ϵ′ 和 μ ′ \mu' μ′ 是介质的储能特性(实部), ϵ ′ ′ \epsilon'' ϵ′′ 和 μ ′ ′ \mu'' μ′′ 是介质的损耗特性(虚部)。
根据复数波矢的定义和介质的复数参数,波矢的平方可以表示为:
k 2 = ( β − j γ ) 2 = ω 2 ( ϵ ′ + j ϵ ′ ′ ) ( μ ′ + j μ ′ ′ ) k^2 = (\beta - j\gamma)^2 = \omega^2 (\epsilon' + j\epsilon'')(\mu' + j\mu'') k2=(β−jγ)2=ω2(ϵ′+jϵ′′)(μ′+jμ′′)
为了匹配复数的实部和虚部:
− 2 β γ = ω 2 ( ϵ ′ μ ′ ′ + ϵ ′ ′ μ ′ ) -2\beta\gamma = \omega^2 (\epsilon'\mu'' + \epsilon''\mu') −2βγ=ω2(ϵ′μ′′+ϵ′′μ′)
虚部关系表明,负折射率材料在实现负折射的同时,必然伴随着一定的能量损耗。这是因为这些材料需要满足克拉默斯-克罗尼关系(Kramers-Kronig Relations),实部和虚部之间的因果关系使得损耗无法完全消除。当电容率和磁导率的虚部匹配时,波矢可以为负,表示负折射现象。
功率流(Power Flow)
公式:
Re { 1 2 E × H ∗ } \text{Re}\left\{\frac{1}{2} \mathbf{E} \times \mathbf{H}^*\right\} Re{
21E×H∗}
E 0 = η H 0 \mathbf{E}_0 = \eta \mathbf{H}_0 E0=ηH0
解释:
- 功率流描述了电磁波在介质中的能量传输方向和大小。
- 在无源介质中,功率流的实部应为正,表示能量沿正方向传播。
虚数阻抗(Imaginary Impedance)
公式:
Re ( η ) positive for passive media and power flow must be in the +z direction \text{Re}(\eta) \text{ positive for passive media and power flow must be in the +z direction} Re(η) positive for passive media and power flow must be in the +z direction
解释:
- 虚数阻抗会导致相位变化,影响电磁波在介质中的传播。
双负介质(DNG)中实现左手性(负折射率)的必要和充分条件
- 充分条件: ϵ \epsilon ϵ 和 μ \mu μ 的实部均为负值是实现左手性的充分条件,但不是必要条件。
- 必要和充分条件: 要实现左手性,必须满足以下条件:
ϵ ′ ∣ ϵ ∣ + μ ′ ∣ μ ∣ < 0 \frac{\epsilon'}{|\epsilon|} + \frac{\mu'}{|\mu|} < 0 ∣ϵ∣ϵ′+∣μ∣μ′<0
推导过程:
负折射率材料(或左手性材料)具有一些与传统正折射率材料不同的独特性质,包括:
- 在负折射率材料中,电磁波的相位速度方向与能量流(即功率流)的方向相反。
- 相位速度由波矢 k \mathbf{k} k 的实部( β \beta β)决定,而能量流方向则由电场和磁场的交叉乘积决定。
-
β \beta β 和 γ \gamma γ 都为正值:
- 在实际物理系统中, β \beta β 和 γ \gamma γ 都需要为正值以表示实际的传播和衰减现象。
- β \beta β 为正值表示电磁波相位传播的正向传播,这对应于波前向前传播。
- γ \gamma γ 为正值表示能量的衰减,能量在介质中逐渐减少,这是实际材料中能量损耗的表现。
-
乘积为负值:
- 乘积为负值的要求源于负折射率材料的特性:
- 在负折射率材料中,电磁波的相位速度方向(由 β \beta β决定)和能量流方向相反。
- 为了实现这一点, β \beta β 和 γ \gamma γ 的乘积必须为负,这确保了波矢的虚部与实部之间的关系符合负折射率材料的特性。
- 乘积为负值的要求源于负折射率材料的特性:
波矢 k \mathbf{k} k 的平方可以表示为:
k 2 = ( β − j γ ) 2 = ω 2 ϵ μ k^2 = (\beta - j\gamma)^2 = \omega^2 \epsilon \mu k2=(β−jγ)2=ω2ϵμ
将复数电容率和磁导率代入公式,我们得到:
( β − j γ ) 2 = ω 2 ( ϵ ′ + j ϵ ′ ′ ) ( μ ′ + j μ ′ ′ ) (\beta - j\gamma)^2 = \omega^2 (\epsilon' + j\epsilon'')(\mu' + j\mu'') (β−jγ)2=ω2(ϵ′+jϵ′′)(μ′+jμ′′)
展开右边的表达式:
( β − j γ ) 2 = ω 2 [ ( ϵ ′ μ ′ − ϵ ′ ′ μ ′ ′ ) + j ( ϵ ′ μ ′ ′ + ϵ ′ ′ μ ′ ) ] (\beta - j\gamma)^2 = \omega^2 [(\epsilon'\mu' - \epsilon''\mu'') + j(\epsilon'\mu'' + \epsilon''\mu')] (β−jγ)2=ω2[(ϵ′μ′−ϵ′′μ′′)+j(ϵ′μ′′+ϵ′′μ′)]
匹配复数的虚部:
− 2 β γ = ω 2 ( ϵ ′ μ ′ ′ + ϵ ′ ′ μ ′ ) -2\beta\gamma = \omega^2 (\epsilon'\mu'' + \epsilon''\mu') −2βγ=ω2(ϵ′μ′′+ϵ′′μ′)
假设介质是无损耗的,即 ϵ ′ ′ = 0 \epsilon'' = 0 ϵ′′=0 和 μ ′ ′ = 0 \mu'' = 0 μ′′=0,我们得到:
− 2 β γ = ω 2 ( ϵ ′ ⋅ 0 + 0 ⋅ μ ′ ) = 0 -2\beta\gamma = \omega^2 (\epsilon' \cdot 0 + 0 \cdot \mu') = 0 −2βγ=ω2(ϵ′⋅0+0⋅μ