题目描述
在俄罗斯方块游戏中,有一种由四个正方形小方块组成的大方块。现在,请计算在给定网格大小的情况下,最多可以放置多少个这样的大方块。具体规则如下:
- 网格为正方形网络。
- 方块不能重叠。
- 方块不能超出网格的边界。
- 网格中部分位置不能放置方块。
输入描述
输入包含两行:
- 第一行包含两个整数 n 和 k,分别表示网格的边长和不能放置方块的位置数量。
- 接下来的 k 行,每行包含两个整数 y 和 x,表示不能放置方块的位置坐标。
输出描述
输出一个整数,表示最多能放置的大方块数量。
用例输入
2 0
1
解题思路
- 网格表示:
- 使用一个二维数组
mp
来表示网格,其中0
表示空余位置,1
表示障碍位置,2
表示已放置方块的位置。
- 使用一个二维数组
- 深度优先搜索(DFS):
- 从左上角开始,逐行逐列尝试放置大方块。
- 如果当前位置可以放置大方块,则放置并递归尝试放置下一个大方块。
- 如果当前位置不能放置大方块,则跳过当前列,尝试放置下一个位置。
- 回溯:
- 如果尝试放置后发现不是最优解,则回溯,恢复网格状态,尝试其他放置方式。
解题步骤
- 读取输入数据:
- 读取网格边长 n 和障碍位置数量 k。
- 读取 k 个障碍位置的坐标,并在网格中标记为
1
。
- 初始化网格:
- 使用二维数组
mp
初始化网格,所有位置初始为0
。
- 使用二维数组
- 深度优先搜索(DFS):
- 定义递归函数
dfs
,参数包括当前行 x、当前列 y 和当前放置的大方块数量 t。 - 如果当前行超出网格边界,则更新结果
res
。 - 如果当前列超出网格边界,则递归到下一行。
- 如果当前位置可以放置大方块,则放置并递归尝试放置下一个大方块。
- 如果当前位置不能放置大方块,则跳过当前列,尝试放置下一个位置。
- 定义递归函数
- 统计结果:
- 遍历所有可能的放置方式,记录最多的放置数量。
代码实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<vector>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<set>
#include<list>
#include<sstream>
#include<bitset>
#include<stack>
#include<climits>
#include<iomanip>
#include<cstdint>
using namespace std;
int mp[10][10];
int n, m;
int res = 0;
// 检查以 (x, y) 为左上角是否可以放置大方块
bool check(int x, int y) {
if (x + 1 >= n || y + 1 >= n) return false;
if (!mp[x][y] && !mp[x + 1][y] && !mp[x][y + 1] && !mp[x + 1][y + 1]) return true;
return false;
}
// 放置大方块
void push(int x, int y) {
mp[x][y] = 2;
mp[x + 1][y] = 2;
mp[x][y + 1] = 2;
mp[x + 1][y + 1] = 2;
}
// 移除大方块
void pop(int x, int y) {
mp[x][y] = 0;
mp[x + 1][y] = 0;
mp[x][y + 1] = 0;
mp[x + 1][y + 1] = 0;
}
// 遍历到坐标 (x, y),此时有 t 个大方块
void dfs(int x, int y, int t) {
if (x == n) {
res = max(res, t);
return;
}
if (y == n) {
dfs(x + 1, 0, t);
return;
}
if (check(x, y)) {
push(x, y);
dfs(x, y + 2, t + 1);
pop(x, y);
}
dfs(x, y + 1, t);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m;
memset(mp, 0, sizeof(mp));
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
mp[x][y] = 1;
}
dfs(0, 0, 0);
cout << res;
}