考研概统真题思考 联合概率密度和条件概率密度问题

   在复习考研的过程中,遇到一种类型的考研真题,觉得很有意思,特此记录一下,也希望后来遇到此类困惑的同学能够少走一些弯路
        

        
先附上题目:
(2004年考研数4)
设随机变量 X X X 在区间 ( 0 , 1 ) (0,1) (0,1) 内服从均匀分布,在 X = x ( 0 < x < 1 ) X=x(0<x<1) X=x(0<x<1) 的条件下. 姢机 荌量 Y Y Y 在区间 ( 0 , x ) (0, x) (0,x) 内服从均匀分布, 求:
(1) 随机变量 X X X Y Y Y 的联合概率密度;
(2) Y Y Y 的概率密度;
(3) 概率 P { X + Y > 1 } P\{X+Y>1\} P{X+Y>1}
        

        

---------------(分割线)----------------------------------------------------------------
        

        
(2013年考研真题)
( X , Y ) (X, Y) (X,Y) 是二维随机变量, X X X 的边橡概率密度为
f X ( x ) = { 3 x 2 , 0 < x < 1 .  0 ,  其他.  f_X(x)=\left\{\begin{array}{cc}3 x^2, & 0<x<1 \text {. } \\ 0, & \text { 其他. }\end{array}\right. fX(x)={3x2,0,0<x<1 其他 在给定 X = x ( 0 < x < 1 ) X=x(0<x<1) X=x(0<x<1) 的条件下 Y Y Y 的条件概率密度为
f X x ( y ∣ x ) = { 3 y 2 x 2 , 0 < y < x , 0 ,  其他.  f_{X x}(y \mid x)=\left\{\begin{array}{cc} \frac{3 y^2}{x^2}, & 0<y<x , \\ 0, & \text { 其他. } \end{array}\right. fXx(yx)={x23y2,0,0<y<x 其他
(1) 求 ( X , Y ) (X, Y) (X,Y) 的概率密度 f ( x , y ) f(x, y) f(x,y);
(3) 求 P { X > 2 Y } P\{X>2 Y\} P{X>2Y}

        

        
首先能看出这两个题都是给出条件概率密度求概率密度
自然联想到公式

f ( x , y ) = f X ( x )   f Y ∣ X ( y ∣ x ) f(x,y)=f_X(x) \ f_{Y|X}(y|x) f(x,y)=fX(x) fYX(yx)
对于第二个题来说(第一题也是一样)
直接就这样写了
f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = { 9 y 2 x , 0 < y < x < 1 , 0 ,  其他.  f(x, y)=f_X(x) f_{Y \mid X}(y \mid x)=\left\{\begin{array}{lc} \frac{9 y^2}{x}, & 0<y<x<1, \\ 0, & \text { 其他. } \end{array}\right. f(x,y)=fX(x)fYX(yx)={x9y2,0,0<y<x<1, 其他

然而这是错误的

因为什么呢,我们一步步分析

首先题给的条件是在

X = x    ( 0 < x < 1 ) X=x \ \ (0<x<1) X=x  (0<x<1)的条件下Y有一个条件概率密度

所以我们从逻辑上推导,如果我们运用上面的公式求出的联合概率密度,它也是在这个条件下才成立,也就是说,我们不知道不在这个条件下,联合概率密度还是不是我们求得的那个表达式了

比如说我再给一个条件

X = x    ( x > 1 ) X=x \ \ (x>1) X=x  (x>1) 的条件下Y的条件概率密度是0.2

当然这个条件是瞎给的,没有经过验算,所以最终可能算得的联合概率密度f(x,y)不能满足
∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = 1 \int_{-\infin}^{\infin}\int_{-\infin}^{\infin}f(x,y)dxdy=1 f(x,y)dxdy=1
但是不重要,只要我们意识到还存在另外的可能就行

所以我们回到原先的思路上,就是现在我们不确定在其他条件下,y的条件概率密度是不是还有其他的表达式

那我们怎么办呢?
那就先求已有的,先求出来:

0 < x < 1  时  f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = { 9 y 2 x , 0 < y < x , 0 ,  其他.  0<x<1 \text { 时 } f(x, y)=f_X(x) f_{Y \mid X}(y \mid x)=\left\{\begin{array}{cc} \frac{9 y^2}{x}, & 0<y<x, \\ 0, & \text { 其他. } \end{array}\right. 0<x<1  f(x,y)=fX(x)fYX(yx)={x9y2,0,0<y<x, 其他

就是这个,接下来我们想知道这个是不是最终的答案,那么也很简单,就是求一下这个
∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y \int_{-\infin}^{\infin}\int_{-\infin}^{\infin}f(x,y)dxdy f(x,y)dxdy

看它等不等于1,如果等于一,说明其他情况下都等于0,因为如果其他情况下不等于0,那么俩相加肯定大一1,这就不满足密度函数的定义了

所以我们去求,结果还真等于1
那么这个时候就可以写答案了
f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = { 9 y 2 x , 0 < y < x < 1 , 0 ,  其他.  f(x, y)=f_X(x) f_{Y \mid X}(y \mid x)=\left\{\begin{array}{lc} \frac{9 y^2}{x}, & 0<y<x<1, \\ 0, & \text { 其他. } \end{array}\right. f(x,y)=fX(x)fYX(yx)={x9y2,0,0<y<x<1, 其他

看着这个答案和最开始答案是一木一样的,但是中间的思考和证明过程必不可少,会扣分。

---------------(分割线)----------------------------------------------------------------
        

        
接下来附上比较严谨的说明和证明过程:

第一题
说明:
先给出了 f Y ∣ X ( y ∣ x ) f_{Y | X}(y \mid x) fYX(yx), 反讨来求 f ( x , y ) f(x, y) f(x,y).
如果先给 f ( x , y ) f(x, y) f(x,y), 则求出 f x ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_x(x)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} y fx(x)=+f(x,y)dy, 在 f X ( x ) > 0 f_X(x)>0 fX(x)>0 的条件下求出
f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) , f X ( x ) > 0 f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_X(x)}, f_X(x)>0 fYX(yx)=fX(x)f(x,y),fX(x)>0
如果先给 f Y X ( y ∣ x ) = f ( x , y ) f X ( x ) , f X ( x ) > 0 f_{Y X}(y \mid x)=\frac{f(x, y)}{f_X(x)}, f_X(x)>0 fYX(yx)=fX(x)f(x,y),fX(x)>0, 则 f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) , f X ( x ) > 0 f(x, y)=f_X(x) f_{Y \mid X}(y \mid x), f_X(x)>0 f(x,y)=fX(x)fYX(yx),fX(x)>0. 但 f ( x , y ) f(x, y) f(x,y) 是定义在 − ∞ < x < + ∞ , − ∞ < y < + ∞ -\infty<x<+\infty,-\infty<y<+\infty <x<+,<y<+ 上的, 仅给出 f X ( x ) > 0 f_X(x)>0 fX(x)>0 的这部分 是显然不全的.还得补 f X ( x ) = 0 f_X(x)=0 fX(x)=0 的部分

现题给 X ∼ U ( 0 , 1 ) X \sim U(0,1) XU(0,1), 即有
f X ( x ) = { 1 , 0 < x < 1 , 0 ,  其他.  f_X(x)=\left\{\begin{array}{cc}1, & 0<x<1, \\ 0, & \text { 其他. }\end{array}\right. fX(x)={1,0,0<x<1, 其他
X = x ( 0 < x < 1 ) X=x(0<x<1) X=x(0<x<1) 的条件下, 即有 f X ( x ) > 0 f_X(x)>0 fX(x)>0 条件下, f Y ∣ X ( y ∣ x ) ∼ U ( 0 , x ) f_{Y \mid X}(y \mid x) \sim U(0, x) fYX(yx)U(0,x), 所以
f Y ∣ X ( y ∣ x ) = { 1 x , 0 < y < x , 0 ,  其他.  f X ( x ) > 0. f_{Y \mid X}(y \mid x)=\left\{\begin{array}{lc} \frac{1}{x}, & 0<y<x, \\ 0, & \text { 其他. } \end{array} \quad f_X(x)>0 .\right. fYX(yx)={x1,0,0<y<x, 其他fX(x)>0.
由于 f X ( x ) > 0 f_X(x)>0 fX(x)>0 等价于 0 < x < 1 0<x<1 0<x<1, 上式我们可以改写成
f Y ∣ X ( y ∣ x ) = { 1 x , 0 < y < x < 1 , 0 , 0 < x ⩽ y < 1  或  y ⩽ 0 < x < 1. f_{Y \mid X}(y \mid x)=\left\{\begin{array}{lc}\frac{1}{x}, & 0<y<x<1, \\ 0, & 0<x \leqslant y<1 \text { 或 } y \leqslant 0<x<1 .\end{array}\right. fYX(yx)={x1,0,0<y<x<1,0<xy<1  y0<x<1.

根据公式: f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) 0 < x < 1 f(x, y)=f_X(x) f_{Y \mid X}(y \mid x) \quad 0<x<1 f(x,y)=fX(x)fYX(yx)0<x<1;
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x ; P { X + Y > 1 } = ∬ x + y > 1 f ( x , y ) d x   d y . f_Y(y)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x ; P\{X+Y>1\}=\iint_{x+y>1} f(x, y) \mathrm{d} x \mathrm{~d} y . fY(y)=+f(x,y)dx;P{X+Y>1}=x+y>1f(x,y)dx dy.
不难求得 (1) (2)(3).

        

        

求解过程:
f X ( x ) > 0 f_X(x)>0 fX(x)>0 时, 即 0 < x < 1 0<x<1 0<x<1 时, f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) f(x, y)=f_X(x) f_{Y \mid X}(y \mid x) f(x,y)=fX(x)fYX(yx). 故 当 0 < x < 1 0<x<1 0<x<1
f ( x , y ) = { 1 x , 0 < y < x < 1 , 0 , 0 < x ⩽ y < 1  或  y ⩽ 0 < x < 1 , 0 < x < 1 ⩽ y .  \quad f(x, y)= \begin{cases}\frac{1}{x}, & 0<y<x<1, \\ 0, & 0<x \leqslant y<1 \text { 或 } y \leqslant 0<x<1,0<x<1 \leqslant y \text {. }\end{cases} f(x,y)={x1,0,0<y<x<1,0<xy<1  y0<x<1,0<x<1y
由于 ∫ 0 1   d x ∫ − ∞ + ∞ f ( x , y ) d y = ∫ 0 1   d x ∫ 0 x 1 x   d y = ∫ 0 1   d x = 1 \quad \int_0^1 \mathrm{~d} x \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} y=\int_0^1 \mathrm{~d} x \int_0^x \frac{1}{x} \mathrm{~d} y=\int_0^1 \mathrm{~d} x=1 01 dx+f(x,y)dy=01 dx0xx1 dy=01 dx=1

又由于 f ( x , y ) ⩾ 0 , ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x   d y = 1 \quad f(x, y) \geqslant 0, \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1 f(x,y)0,++f(x,y)dx dy=1

可知当 x ⩽ 0 x \leqslant 0 x0 x ⩾ 1 x \geqslant 1 x1 时, f(x, y)=0
总之
f ( x , y ) = { 1 x , 0 < y < x < 1 , 0 ,  其他.  f(x, y)=\left\{\begin{array}{lc}\frac{1}{x}, & 0<y<x<1, \\ 0, & \text { 其他. }\end{array}\right. f(x,y)={x1,0,0<y<x<1, 其他

        

        
        

        
        

        
第二题就不写了,留给读者自证

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值