给定以下方法声明,调用执行 mystery(1234) 的输出结果?

本文探讨了Java编程中的方法调用和执行,涉及继承、类型转换、垃圾回收机制、数据结构排序算法复杂度、运行时常量池、包管理、设计模式等多个核心概念。通过一系列问题和答案,帮助读者巩固和理解Java语言的关键特性。
摘要由CSDN通过智能技术生成
  1. 给定以下方法声明,调用执行 mystery(1234) 的输出结果?
    (43211234)
//precondition: x >=0
public void mystery (int x) {
   
	System.out.print(x % 10);
	if ((x / 10) != 0){
   
		mystery(x / 10);
	} 
	System.out.print(x % 10);
}
  1. 下列关于继承的描述正确的是(C )
    A:函数的出口应该尽可能少,最好只有一个出口
    B:为了防止程序中内存漏,应该不使用动态分配内存
    C√:在函数实现中应该少使用全局变量
    D:函数的功能应该单一

  2. Java Application(Java 应用程序) 源程序文件编译后的字节码文件的扩展名是( B)
    A: java
    B√: class
    C: exe
    D: jar

  3. 下面的方法,当输入为2的时候返回值是多少?
    (10 )

public static int getValue(int i) {
   
	int result = 0;
	switch (i) {
   
		case 1:
			result = result + i;
		case 2:
			result = result + i * 2;
		case 3:
			result = result + i * 3;
	} 
	return result;
}
  1. 以下代码的循环次数是 ( 无限次)
public class 
### 回答1: 这是一个简单的电影推荐系统代码,基于用户的历史评分和电影的流派进行推荐。该代码使用Python编写,需要使用pandas和numpy库。 ```python import pandas as pd import numpy as np # 读入电影数据 movies = pd.read_csv('movies.csv') # 读入评分数据 ratings = pd.read_csv('ratings.csv') # 将评分数据按照用户id进行分组 grouped_ratings = ratings.groupby('userId') # 计算每个用户评分过的电影数量 num_ratings = grouped_ratings['rating'].count() # 只保留评分数量大于10的用户 valid_users = num_ratings[num_ratings >= 10].index # 从评分数据中筛选出符合条件的数据 valid_ratings = ratings[ratings['userId'].isin(valid_users)] # 计算每个电影的平均分 movie_ratings = valid_ratings.groupby('movieId')['rating'].agg(['mean', 'count']) # 只保留被评分次数大于10次的电影 popular_movies = movie_ratings[movie_ratings['count'] >= 10] # 从电影数据中筛选出符合条件的数据 valid_movies = movies[movies['movieId'].isin(popular_movies.index)] # 构建电影-流派矩阵 genres = ['Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'] genre_matrix = np.zeros((len(valid_movies), len(genres))) for i, row in valid_movies.iterrows(): for j, genre in enumerate(genres): if genre in row['genres']: genre_matrix[i, j] = 1 # 计算每个用户的平均分,并进行归一化处理 user_ratings = valid_ratings.groupby('userId')['rating'].mean() user_ratings = (user_ratings - user_ratings.min()) / (user_ratings.max() - user_ratings.min()) # 计算每个电影的加权平均分 movie_ratings['weighted_rating'] = movie_ratings['mean'] * movie_ratings['count'] / movie_ratings['count'].sum() # 计算每个电影的流派向量 genre_weights = genre_matrix.T.dot(movie_ratings['weighted_rating']) # 计算每个用户对每个流派的偏好程度 user_genre_scores = genre_matrix.dot(genre_weights) # 对每个用户进行电影推荐 for user in valid_users: # 获取用户评分过的电影 user_ratings = valid_ratings[valid_ratings['userId'] == user] # 计算用户对每个电影的偏好程度 movie_scores = user_ratings.merge(movie_ratings, on='movieId') movie_scores['score'] = movie_scores['rating'] * user_genre_scores[movie_scores.index] # 对电影按照得分进行排序,并输出推荐结果 recommended_movies = movie_scores.sort_values('score', ascending=False).head(10) print(f'Recommended movies for user {user}:') for i, row in recommended_movies.iterrows(): print(f'{row["title"]} ({row["year"]}) - Score: {row["score"]}') ``` 该代码将电影数据和评分数据读入Pandas DataFrame中,并对用户进行筛选,只保留评分数量大于10的用户和被评分次数大于10的电影。然后,根据电影流派构建电影-流派矩阵,并计算每个用户对每个流派的偏好程度。最后,对每个用户进行电影推荐,推荐结果按照得分进行排序输出。 请注意,该代码仅用于演示目的,实际应用中可能需要进行更复杂的数据清洗和特征工程处理。 ### 回答2: 电影数据推荐系统是一种根据用户的兴趣和喜好,为其推荐相关电影的系统。下面是一个简单的电影数据推荐系统的代码,能够根据用户的评分数据输出推荐结果。 首先,我们需要一个电影数据库,其中包含电影的信息,如电影名称、导演、主演等。这个数据库可以是一个包含电影对象的列表。 然后,我们需要一个用户评分的数据库,其中包含用户对不同电影的评分数据,可以是一个字典,键为电影名称,值为用户的评分。 接下来,我们可以通过计算用户之间的相似度来得到推荐结果。这里使用余弦相似度作为相似度度量。具体步骤如下: 1. 根据用户评分的数据库,计算每个用户的平均评分。 2. 根据用户评分的数据库,计算每个用户与其他用户的相似度,可以使用余弦相似度公式。 3. 对于要进行推荐的用户,找出与其相似度最高的用户。 4. 根据最相似用户的评分数据,找出该用户评分高但推荐用户未评分的电影,作为推荐结果。 下面是一个简单的示例代码: ``` def cosine_similarity(user1_ratings, user2_ratings): dot_product = sum(user1_ratings[movie] * user2_ratings[movie] for movie in user1_ratings if movie in user2_ratings) magnitude_user1 = sum(user1_ratings[movie] ** 2 for movie in user1_ratings) ** 0.5 magnitude_user2 = sum(user2_ratings[movie] ** 2 for movie in user2_ratings) ** 0.5 if magnitude_user1 == 0 or magnitude_user2 == 0: return 0 return dot_product / (magnitude_user1 * magnitude_user2) def recommend_movies(user_ratings, movies_db): user_avg_rating = sum(user_ratings.values()) / len(user_ratings) similarities = {} for user, ratings in user_ratings.items(): similarity = cosine_similarity(user_ratings, ratings) similarities[user] = similarity most_similar_user = max(similarities, key=similarities.get) recommended_movies = [] for movie, rating in ratings.items(): if movie not in user_ratings and rating > user_avg_rating: recommended_movies.append(movie) return recommended_movies # 电影数据库 movies_db = [ {"name": "电影1", "director": "导演1", "cast": ["演员1", "演员2"], ...}, {"name": "电影2", "director": "导演2", "cast": ["演员3", "演员4"], ...}, ... ] # 用户评分数据库 user_ratings = { "用户1": {"电影1": 4, "电影2": 3, ...}, "用户2": {"电影1": 5, "电影3": 2, ...}, ... } user_to_recommend = "用户1" recommended_movies = recommend_movies(user_ratings[user_to_recommend], movies_db) print("推荐给用户1的电影有:") for movie in recommended_movies: print(movie) ``` 这段代码能够根据用户评分数据输出推荐结果,即推荐给用户1的电影。推荐结果是根据用户评分最高的用户的评分数据生成的。这是一个简单的示例,实际的推荐系统可能会更加复杂,包括更多的算法和数据处理步骤。 ### 回答3: 要编写电影数据推荐系统代码并能输出推荐结果,需按照以下步骤进行: 1. 数据集准备:首先需要收集一定数量的电影数据,并构建一个电影数据库。数据集应包含电影的属性信息,如电影类型、导演、演员、评分等。 2. 数据处理:对收集到的数据进行预处理,将其转化为适合机器学习算法处理的形式。可能需要进行数据清洗、特征选择等操作。此外,还需要将电影数据转换为向量表示,以便计算相似度。 3. 特征提取:使用合适的方法从电影数据中提取有用的特征。例如,可以使用TF-IDF等方法提取电影的关键词特征。 4. 相似度计算:通过计算电影之间的相似度,确定某一部电影与其他电影的关系。可以使用余弦相似度或基于内容的推荐算法计算电影之间的相似度。 5. 推荐算法:根据用户的偏好和历史行为,选择合适的推荐算法进行推荐。可以采用基于内容的推荐、协同过滤、深度学习等不同的推荐算法。 6. 推荐结果输出:根据用户打分历史和特征相似度,将推荐结果按一定规则排序后输出。可以设置阈值来过滤推荐结果,保证输出的推荐结果质量。 总体而言,电影数据推荐系统的代码实现具有一定的复杂性,需要充分利用机器学习和数据挖掘的相关知识。在代码编写过程中,可以使用Python等编程语言,借助现有的机器学习库和数据处理工具,例如scikit-learn、pandas等。最后,通过与用户的互动和反馈,进一步优化推荐系统的性能和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值