多目标优化

1.多目标优化方法的分类:

    (1)在所谓的“不偏好”方法中,预计不会有decision-makers, 但在没有偏好信息的情况下,确定了一个中立的折中解决方案。

    (2)先验方法:首先从DM中提出偏好信息,然后找到最满意这些偏好的解决方案。

    (3)后验方法:在后验方法中,首先发现了一组代表性的帕累托最优解,然后再选择其中一组。

    (4)交互方法:在交互方法中,允许决策器迭代搜索最优先的解决方案。在交互方法的每一次迭代中,dm都得到了帕累托最优解,并描述了解决方案的改进。然后在生成新的帕累托优化解的同时考虑决策者给出的信息,以便在下一次迭代中学习。这样,dm就能了解他/她的愿望的可行性,并能集中精力解决他/她所感兴趣的解决方案。每当他/她想要的时候,dm就可以停止搜索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值