linux下anaconda创建新的环境(详细版)

linux下anaconda创建新的环境:

环境:anaconda3+python3.8+tensor-gpu1.5.0


先确定一下anaconda的位置:

which conda

创建一个新的python3环境,新环境一般会安装在anaconda/bin/envs下,也可以自定义路径:

conda create --name env_name python3

env_name 是环境名,运行后会显示这个环境安装的packages的名字和版本,选择y即可。如果报错python3不在channel中,表明bin目录下没有python3文件。
配置需要的python版本前先到anaconda/bin下查看有哪些python的版本,文件名字是什么。
比方说有时候python3会被默认命名为python或者python36,
不确定python版本的话,在cmd中cd到anaconda/bin目录,运行这个文件就可以打开python shell看到版本信息


创建成功后,激活环境

source activate env_name

确认一下python3和pip是当前环境下的地址

which python3
which pip

显示路径应该是在anaconda/bin/envs/env_name/bin下的路径,而不是本机原来的python3和pip的路径。
路径无误之后,注意创建的新环境自带的是python3和pip,pip3不会自动安装


如果需要pip3

#下载setuptools
wget –no-check-certificate https://pypi.python.org/packages/source/s/setuptools/setuptools-19.6.tar.gz#md5=c607dd118eae682c44ed146367a17e26 
#解压
tar -zxvf setuptools-19.6.tar.gz
#编译安装
cd setuptools-19.6
python3 setup.py build
python3 setup.py install
#下载pip3
wget –no-check-certificate https://pypi.python.org/packages/source/p/pip/pip-8.0.2.tar.gz#md5=3a73c4188f8dbad6a1e6f6d44d117eeb 
#解压
tar -zxvf pip-8.0.2.tar.gz
#编译安装
cd pip-8.0.2
python3 setup.py build
python3 setup.py install

有pip和pip3之后,直接装tensorflow-gpu即可

pip3 install tensorflow-gpu==1.5.0

装packages的话首推pip和pip3,conda install不仅慢而且经常channel找不到。


查看安装的包:

#这个环境下所有安装过的包
conda list
#pip安装的
pip list
#pip3安装的
pip3 list

推出环境:

source deactivate

查看所有安装的环境:

conda info -e
### 如何在 Linux 系统中用 Anaconda 创建 Python 虚拟环境 #### 安装 Anaconda 并将其加入系统路径 为了确保可以正常使用 `conda` 命令,在安装完成后需确认已将 Anaconda 添加到系统的 PATH 中。如果遇到 `-sh:conda:未找到命令` 的提示,则表示尚未完成此操作。此时应编辑 `.bashrc` 或者相应的 shell 配置文件,添加如下行来设置环境变量: ```bash export PATH=/home/yourName/anaconda3/bin/:$PATH ``` 这会使得每次启动终端时自动加载 anaconda bin 文件夹下的工具至可执行路径列表里[^4]。 #### 查看 Conda 本验证安装成功与否 通过运行下面这条指令能够检验是否正确设置了路径以及 conda 是否被正常安装: ```bash conda -V ``` 该命令应当返回所安装的具体本号;反之则意味着存在问题需要排查解决。 #### 使用 Conda 创建新的虚拟环境 一旦准备工作就绪便可以通过简单的命令创建一个新的 Python 虚拟环境。例如要建立名为 myenv 且基于 Python 3.7.x 的工作空间,只需输入以下语句即可实现目标: ```bash conda create -n myenv python=3.7 ``` 这里 `-n` 参数后面跟的是自定义的名字用于区分不同的项目或用途,而 `python=3.7` 则指定了希望使用的特定本解释器[^3]。 #### 激活与停用新创建的虚拟环境 当完成了上述步骤之后就可以利用激活命令进入刚刚构建好的环境中去了: ```bash source activate myenv ``` 同样地,退出当前活动的工作区也很简单,只需要键入 deactivate 即可切换回默认的基础(base)状态[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值