【非参数统计02】单一样本的位置推断问题:符号检验、分位数推断、Cox-Staut趋势存在性检验、随机游程检验、Wilcoxon符号秩检验、位置参数区间估计、正态记分、分布一致性检验、稳健性评价

本文深入探讨了单一样本的位置推断问题,包括符号检验、Cox-Staut趋势存在性检验、随机游程检验和Wilcoxon符号秩检验。通过对各种统计量的分析,提供了在不同场景下的检验方法和大样本近似,旨在评估数据分布的对称性和趋势性。此外,还涉及了分位数推断、位置参数区间估计、稳健性评估和正态记分检验等关键概念。
摘要由CSDN通过智能技术生成


这一个系列的笔记和整理希望可以帮助到正在学习非参数统计的同学。我会慢慢更新各个章节的内容。

2 单一样本的位置推断

2.1 符号检验

中位数检验定义检验问题如下:
H 0 : M e = M 0 ↔ H 1 : M e ≠ M 0 H_0:M_{e} = M_0 \leftrightarrow H_1:M_{e}\neq M_0 H0:Me=M0H1:Me=M0
定义 Y i = I { X i > M 0 } Y_i=I\{X_i > M_0\} Yi=I{ Xi>M0}, Z i = I { X i < M 0 } , i = 1 , 2 , . . . , n Z_i=I\{X_i < M_0 \}, i=1,2,...,n Zi=I{ Xi<M0},i=1,2,...,n
累积值计算:
S + = ∑ i = 1 n Y i = ∑ i = 1 n I { X i > M 0 } S − = ∑ i = 1 n Z i = ∑ i = 1 n I { X i < M 0 } \begin{aligned} S^+ &= \sum_{i=1}^n Y_i = \sum_{i=1}^n I\{X_i > M_0 \}\\ S^- &= \sum_{i=1}^n Z_i = \sum_{i=1}^n I\{X_i < M_0 \} \end{aligned} S+S=i=1nYi=i=1nI{ Xi>M0}=i=1nZi=i=1nI{ Xi<M0}
k = m i n { S + , S − } k=min\{S^+,S^-\} k=min{ S+,S},此时的假设检验问题转换为 Y ∼ b ( 1 , p ) Y \sim b(1,p) Yb(1,p)的参数检验问题,其中 p = P ( X > M 0 ) , H 0 : p = 0.5 ↔ H 1 : p ≠ 0.5 p=P(X>M_0), H_0:p=0.5 \leftrightarrow H_1:p \neq 0.5 p=P(X>M0),H0:p=0.5H1:p=0.5. 这个检验的拒绝域为
2 ∗ P b i n o m { K ⩽ k ∣ n , p = 0.5 } ⩽ α 2*P_{binom}\{K\leqslant k|n,p=0.5\} \leqslant \alpha 2Pbinom{ Kkn,p=0.5}α
不看拒绝域直接算一个 p p p值应该更方便
p = 2 ∗ P { K ⩽ k ∣ n , p = 0.5 } = 2 ∑ i = 0 k C n k 0. 5 n p=2*P\{K\leqslant k|n,p=0.5\} = 2\sum_{i=0}^k C_{n}^{k}0.5^{n} p=2P{ Kkn,p=0.5}=2i=0kCnk0.5n

2.1.2 大样本场合

当样本量较大的时候,可以使用二项分布的正态近似进行检验。当 S + ∼ B ( n ′ , 1 2 ) S^+ \sim B(n',\frac{1}{2}) S+B(n,21)时, S + ∼ N ( n ′ 2 , n ′ 4 ) S^+ \sim N(\frac{n'}{2}, \frac{n'}{4}) S+N(2n,4n),定义渐进服从标准正态分布的统计量
Z = S + − n ′ 2 n ′ 4 → N ( 0 , 1 ) , n → L + ∞ Z = \frac{S^+ - \frac{n'}{2}}{\sqrt{\frac{n'}{4}}} \to N(0,1), n\stackrel{\mathcal{L}}{\to} +\infty Z=4n S+2nN(0,1),nL+

正态性修正
n ′ n' n不够大的时候,可以用正态性修正
Z = S + − n ′ 2 + C n ′ 4 → N ( 0 , 1 ) , n → L + ∞ Z = \frac{S^+ - \frac{n'}{2} + C}{\sqrt{\frac{n'}{4}}} \to N(0,1), n \stackrel{\mathcal{L}}{\to} +\infty Z=4n S+2n+CN(0,1),nL+
其中,
C = { − 1 2 , S + < n ′ 2 1 2 , S + > n ′ 2 C = \left \{ \begin{aligned} -\frac{1}{2} &, S^+<\frac{n'}{2}\\ \frac{1}{2} &, S^+>\frac{n'}{2} \end{aligned} \right . C=2121,S+<2n,S+>2n

2.1.3 配对样本

要熟悉怎么从一对样本中提炼出符号问题,假设我们的数据呈现 { ( x i , y i ) } n \{(x_i,y_i)\}_{n} { (xi,yi)}n的形式,如果 x i < y i x_i<y_i xi<yi,可以记为 + + +,反之为 − - ,相等为0.我们只比较 + − +- +的个数,就回到了2.1.1-2,4的问题。

2.1.4 分位数检验

直接对于2.1.1的分位数检验进行推广即可,注意 S + S^+ S+在原假设下服从的伯努利分布不再一定是 b ( n ′ , 0.5 ) b(n',0.5) b(n,0.5).一般意义下为 S + ∼ b ( n ′ , 1 − p 0 ) S^+\sim b(n', 1-p_0) S+b(n,1p0)

例子
关心空气质量的0.25分位数是否在的水平
H 0 : M 0.25 ⩽ 50 , H 1 : M 0.25 > 50 H_0:M_{0.25}\leqslant50,\quad H_1:M_{0.25}>50 H0:M0.2550,H1:M0.25>50
定义 S + = ∑ i = 1 n Y i , S − = ∑ i = 1 n Z i S^+=\sum_{i=1}^n Y_i,\quad S^-=\sum_{i=1}^n Z_i S+=i=1nYi,S=i=1nZi
其中 Y i = I { X i > M 0.25 } Y_i=I\{X_i>M_{0.25}\} Yi=I{ Xi>M0.25}, Z i = I { X i < = M 0.25 } Z_i=I\{X_i<=M_{0.25}\} Zi=I{ Xi<=M0.25}
数值计算如下

Splus = length(which(aqi$AQI>50))
Sneg = length(which(aqi$AQI<=50))
print(paste0('S^+ | ', Splus, ' | S^- | ', Sneg))

计算p值
P { S − ⩽ 2 ∣ n = 34 , p = 0.25 } = ∑ i = 0 2 C n i p i ( 1 − p ) n − i ∣ n − 34 , p = 0.25 \begin{aligned} P\{S^- \leqslant 2 | n = 34, p = 0.25\} &=\sum_{i=0}^2 C_{n}^i p^i(1-p)^{n-i} |_{n-34,p=0.25} \end{aligned} P{ S2n=34,p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值