小猪猪的深度学习之路-2-多显卡加载

DataParallel

model=torch.nn.DataParallel(model,device_ids=显卡id)#显卡id格式为list

model.to(torch.device(“cuda:0”)

device = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)
inputs, labels = inputs.to(device), labels.to(device)

optimizer = nn.DataParallel(optimizer, device_ids=device_ids)
optimizer.to(torch.device(“cuda:0”)
注:此方法会导致严重的负载不均衡现象,即gpu 0的使用内存会大大超出其他显卡的使用内存。

torch.nn.parallel.DistributedDataParallel()

有点复杂,先略过,性能比DataParallel好,不过依然不如买卡有效果。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值