DataParallel
model=torch.nn.DataParallel(model,device_ids=显卡id)#显卡id格式为list
model.to(torch.device(“cuda:0”)
device = torch.device(“cuda:0” if torch.cuda.is_available() else “cpu”)
inputs, labels = inputs.to(device), labels.to(device)
optimizer = nn.DataParallel(optimizer, device_ids=device_ids)
optimizer.to(torch.device(“cuda:0”)
注:此方法会导致严重的负载不均衡现象,即gpu 0的使用内存会大大超出其他显卡的使用内存。
torch.nn.parallel.DistributedDataParallel()
有点复杂,先略过,性能比DataParallel好,不过依然不如买卡有效果。。。