4. 概率

文章目录

概率

接着上一篇频率继续往下展开。

上一篇文章提到的抛硬币出现正面的频率。

频率实验3.jpg

从中可以看出频率 f n ( H ) f_n(H) fn(H) n n n 的增大渐趋稳定,存在一个稳定值。

定义 1 概率的统计性定义:

当试验的次数增加时,随机事件 A 发生的频率的稳定值 p p p 称为概率。记为 P ( A ) = p P(A) = p P(A)=p

定义 2 (概率的公理化定义):

设随机实验对应的样本空间为 S S S

对每个事件 A A A,定义 P ( A ) P(A) P(A),满足:

  1. 非负性: P ( A ) ≥ 0 P(A)\geq 0 P(A)0
  2. 规范性: P ( S ) = 1 P(S) = 1 P(S)=1
  3. 可列可加性:
    A 1 , A 2 , . . . 两 两 互 斥 , 即 A i A j = ∅ , i ≠ j , 则 A_1,A_2,...两两互斥,即 A_iA_j = \emptyset, i \neq j, 则 A1,A2,...AiAj=,i=j,

P ( ⋃ i = 1 ∞ ) A i = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^\infty)A_i = \sum_{i=1}^\infty P(A_i) P(i=1)Ai=i=1P(Ai)


P ( A ) P(A) P(A) 为事件 A A A 的概率。

性质:

1 。 1^。 1 P ( ∅ ) = 0 P(\emptyset) = 0 P()=0

2 。 2^。 2 P ( A ) = 1 − P ( A ‾ ) P(A) = 1 - P(\overline{A}) P(A)=1P(A)

3 。 3^。 3 (有限可加性)
A 1 , A 2 , . . . , A n , A i A j = ∅ , i ≠ j , A_1,A_2,...,A_n,A_iA_j = \emptyset, i\neq j, A1,A2,...,An,AiAj=,i=j,

   ⟹    P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) \implies P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) P(i=1nAi)=i=1nP(Ai)

4 。 4^。 4 A ⊂ B , 则 有 P ( B − A ) = P ( B ) − P ( A ) A\subset B, 则有 P(B-A)=P(B)-P(A) AB,P(BA)=P(B)P(A)
证:
B = A ⋃ ( B − A ) B = A \bigcup (B - A) B=A(BA) 不交并
   ⟹    P ( B ) = P ( A ) + P ( B − A ) \implies P(B) = P(A) + P(B - A) P(B)=P(A)+P(BA)
   ⟹    P ( B − A ) = P ( B ) − P ( A ) \implies P(B - A) = P(B) - P(A) P(BA)=P(B)P(A)
   ⟹    P ( B ) ≥ P ( A ) , 于 是 有 P ( A ) ≤ P ( S ) = 1 \implies P(B)\geq P(A),于是有 P(A)\leq P(S)=1 P(B)P(A)P(A)P(S)=1
延伸: 一般情况下 P ( B − A ) = P ( B ) − P ( A B ) P(B-A)=P(B)-P(AB) P(BA)=P(B)P(AB)

5 。 5^。 5 概率的加法公式:
P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\bigcup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
证:
A ⋃ B = A ⋃ ( B − A ) A\bigcup B=A\bigcup (B-A) AB=A(BA)
   ⟹    P ( A ⋃ B ) = P ( A ) + P ( B − A ) \implies P(A\bigcup B)=P(A)+P(B-A) P(AB)=P(A)+P(BA)
   ⟹    P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) \implies P(A\bigcup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

# 5 。 \#5^。 #5 的推广 1:
P ( A ⋃ B ⋃ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\bigcup B\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

证:
P ( A ⋃ B ⋃ C ) = P ( A ⋃ B ) + P ( C ) − P ( A C ⋃ B C ) = P ( A ) + P ( B ) − P ( A B ) + P ( C ) − P ( A C ) − P ( B C ) + P ( A B C ) \begin{aligned} P(A\bigcup B\bigcup C) =& P(A\bigcup B)+P(C)-P(AC\bigcup BC) \\ =& P(A)+P(B)-P(AB)+P(C)-P(AC)-P(BC)+P(ABC) \end{aligned} P(ABC)==P(AB)+P(C)P(ACBC)P(A)+P(B)P(AB)+P(C)P(AC)P(BC)+P(ABC)

# 5 。 \#5^。 #5 的推广 2(一般情形):
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n P ( A i A j A k ) + . . . + ( − 1 ) n − 1 P ( A 1 A 2 . . . A n ) P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1\leq i<j\leq n} P(A_iA_j) + \sum_{1\leq i<j<k\leq n} P(A_iA_jA_k) + ... + (-1)^{n-1} P(A_1A_2...A_n) P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)+...+(1)n1P(A1A2...An)


例 1: 设甲、乙两人向同一目标进线射击,已知甲击中的概率为0.7, 乙击中目标的概率为0.6,两人同时击中目标的概率为0.4,
求:
(1)目标不被击中的概率;
(2)甲击中目标而乙未击中的概率.

解:
设 A = {甲击中目标},B={乙击中目标},则 P ( A ) = 0.7 , P ( B ) = 0.6 , P ( A B ) = 0.4 P(A) = 0.7, P(B) = 0.6, P(AB)=0.4 P(A)=0.7,P(B)=0.6,P(AB)=0.4.

而{目标不被击中}= A ‾   B ‾ = A ⋃ B ‾ \overline{A}~\overline{B} = \overline{A\bigcup B} A B=AB,

{甲击中目标而乙未击中}= A B ‾ = A − A B , 所 以 A\overline{B}=A-AB,所以 AB=AAB

(1): P ( A ‾   B ‾ ) = 1 − P ( A ⋃ B ) = 1 − [ P ( A ) + P ( B ) − P ( A B ) ] = 1 − [ 0.7 + 0.6 − 0.4 ] = 0.1 P(\overline{A}~\overline{B})=1-P(A\bigcup B)=1-[P(A)+P(B)-P(AB)]=1-[0.7+0.6-0.4]=0.1 P(A B)=1P(AB)=1[P(A)+P(B)P(AB)]=1[0.7+0.60.4]=0.1,

(2): P ( A B ‾ ) = P ( A ) − P ( A B ) = 0.7 − 0.4 = 0.3. P(A\overline{B})=P(A)-P(AB)=0.7-0.4=0.3. P(AB)=P(A)P(AB)=0.70.4=0.3.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值