二元随机变量分布函数、边际分布函数及条件分布函数
联合分布函数
定义: 设 ( X , Y ) (X,Y) (X,Y) 是二元随机变量,对于任意实数 x , y x, y x,y,二元函数
F ( x , y ) = P { ( X ≤ x ) ⋂ ( Y ≤ y ) } = 记成 P ( X ≤ x , Y ≤ y ) F(x,y)=P\{(X\leq x) \bigcap (Y\leq y)\} \overset{\text{记成}}{=}P(X\leq x,Y\leq y) F(x,y)=P{ (X≤x)⋂(Y≤y)}=记成P(X≤x,Y≤y)
称为二元随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布函数。
例 1: 设随机变量 X X X 在 1、2、3、4 四个整数中等可能地取一个值,随机变量 Y Y Y 在 1 ∼ X 1\sim X 1∼X 中等可能地取一个整数值,求 F ( 3.5 , 2 ) F(3.5, 2) F(3.5,2).
解: X 、 Y X、Y X、Y 的取值情况均为 1,2,3,4;当 i , j = 1 , ⋯ , 4 i,j=1,\cdots,4 i,j=1,⋯,4 时
P ( X = i , Y = j ) = P ( X = i ) P ( Y = j ∣ X = i ) = { 1 4 × 1 i , i ≥ j 1 4 × 0 , i < j P(X=i,Y=j)=P(X=i)P(Y=j|X=i)=\begin{cases} \cfrac{1}{4}\times\cfrac{1}{i}, &i\geq j \\ \\ \cfrac{1}{4} \times 0, &i<j \end{cases} P(X=i,Y=j)=P(X=i)P(Y=j∣X=i)=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧41×i1,41×0,i≥ji<j
联合概率分布律如下:
X Y 1 2 3 4 1 1 4 0 0 0 2 1 8 1 8 0 0 3 1 12 1 12 1 12 0 4 1 16 1 16 1 16 1 16 \begin{array}{c|cc} _X\bcancel{\quad^Y} & 1 & 2 & 3 & 4 \\ \hline 1 & \cfrac{1}{4} & 0 & 0 & 0 \\ \\ 2 & \cfrac{1}{8} & \cfrac{1}{8} & 0 & 0 \\ \\ 3 & \cfrac{1}{12} & \cfrac{1}{12} & \cfrac{1}{12} & 0 \\ \\ 4 & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} \end{array} XY 12341418112116120811211613001211614000161
F ( 3.5 , 2 ) = P ( X ≤ 3.5 , Y ≤ 2 ) F(3.5, 2) = P(X\leq 3.5, Y\leq 2) F(3.5,2)=P(X≤3.5,Y≤2)
= 1 4 + 0 + 1 8 + 1 8 + 1 12 + 1 12 = 2 3 =\cfrac{1}{4} + 0 + \cfrac{1}{8} + \cfrac{1}{8} + \cfrac{1}{12} + \cfrac{1}{12} = \cfrac{2}{3} =41+0+81+81+121+