18. 二元随机变量分布函数、边际分布函数及条件分布函数

二元随机变量分布函数、边际分布函数及条件分布函数


联合分布函数


定义: ( X , Y ) (X,Y) (X,Y) 是二元随机变量,对于任意实数 x , y x, y x,y,二元函数

F ( x , y ) = P { ( X ≤ x ) ⋂ ( Y ≤ y ) } = 记成 P ( X ≤ x , Y ≤ y ) F(x,y)=P\{(X\leq x) \bigcap (Y\leq y)\} \overset{\text{记成}}{=}P(X\leq x,Y\leq y) F(x,y)=P{ (Xx)(Yy)}=记成P(Xx,Yy)

称为二元随机变量 ( X , Y ) (X, Y) (X,Y)联合分布函数


例 1: 设随机变量 X X X 在 1、2、3、4 四个整数中等可能地取一个值,随机变量 Y Y Y 1 ∼ X 1\sim X 1X 中等可能地取一个整数值,求 F ( 3.5 , 2 ) F(3.5, 2) F(3.5,2).

解: X 、 Y X、Y XY 的取值情况均为 1,2,3,4;当 i , j = 1 , ⋯   , 4 i,j=1,\cdots,4 i,j=1,,4

P ( X = i , Y = j ) = P ( X = i ) P ( Y = j ∣ X = i ) = { 1 4 × 1 i , i ≥ j 1 4 × 0 , i < j P(X=i,Y=j)=P(X=i)P(Y=j|X=i)=\begin{cases} \cfrac{1}{4}\times\cfrac{1}{i}, &i\geq j \\ \\ \cfrac{1}{4} \times 0, &i<j \end{cases} P(X=i,Y=j)=P(X=i)P(Y=jX=i)=41×i1,41×0,iji<j

联合概率分布律如下:

X Y 1 2 3 4 1 1 4 0 0 0 2 1 8 1 8 0 0 3 1 12 1 12 1 12 0 4 1 16 1 16 1 16 1 16 \begin{array}{c|cc} _X\bcancel{\quad^Y} & 1 & 2 & 3 & 4 \\ \hline 1 & \cfrac{1}{4} & 0 & 0 & 0 \\ \\ 2 & \cfrac{1}{8} & \cfrac{1}{8} & 0 & 0 \\ \\ 3 & \cfrac{1}{12} & \cfrac{1}{12} & \cfrac{1}{12} & 0 \\ \\ 4 & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} \end{array} XY 12341418112116120811211613001211614000161

F ( 3.5 , 2 ) = P ( X ≤ 3.5 , Y ≤ 2 ) F(3.5, 2) = P(X\leq 3.5, Y\leq 2) F(3.5,2)=P(X3.5,Y2)

= 1 4 + 0 + 1 8 + 1 8 + 1 12 + 1 12 = 2 3 =\cfrac{1}{4} + 0 + \cfrac{1}{8} + \cfrac{1}{8} + \cfrac{1}{12} + \cfrac{1}{12} = \cfrac{2}{3} =41+0+81+81+121+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值