18. 二元随机变量分布函数、边际分布函数及条件分布函数

二元随机变量分布函数、边际分布函数及条件分布函数


联合分布函数


定义: ( X , Y ) (X,Y) (X,Y) 是二元随机变量,对于任意实数 x , y x, y x,y,二元函数

F ( x , y ) = P { ( X ≤ x ) ⋂ ( Y ≤ y ) } = 记成 P ( X ≤ x , Y ≤ y ) F(x,y)=P\{(X\leq x) \bigcap (Y\leq y)\} \overset{\text{记成}}{=}P(X\leq x,Y\leq y) F(x,y)=P{(Xx)(Yy)}=记成P(Xx,Yy)

称为二元随机变量 ( X , Y ) (X, Y) (X,Y)联合分布函数


例 1: 设随机变量 X X X 在 1、2、3、4 四个整数中等可能地取一个值,随机变量 Y Y Y 1 ∼ X 1\sim X 1X 中等可能地取一个整数值,求 F ( 3.5 , 2 ) F(3.5, 2) F(3.5,2).

解: X 、 Y X、Y XY 的取值情况均为 1,2,3,4;当 i , j = 1 , ⋯   , 4 i,j=1,\cdots,4 i,j=1,,4

P ( X = i , Y = j ) = P ( X = i ) P ( Y = j ∣ X = i ) = { 1 4 × 1 i , i ≥ j 1 4 × 0 , i < j P(X=i,Y=j)=P(X=i)P(Y=j|X=i)=\begin{cases} \cfrac{1}{4}\times\cfrac{1}{i}, &i\geq j \\ \\ \cfrac{1}{4} \times 0, &i<j \end{cases} P(X=i,Y=j)=P(X=i)P(Y=jX=i)=41×i1,41×0,iji<j

联合概率分布律如下:

X Y 1 2 3 4 1 1 4 0 0 0 2 1 8 1 8 0 0 3 1 12 1 12 1 12 0 4 1 16 1 16 1 16 1 16 \begin{array}{c|cc} _X\bcancel{\quad^Y} & 1 & 2 & 3 & 4 \\ \hline 1 & \cfrac{1}{4} & 0 & 0 & 0 \\ \\ 2 & \cfrac{1}{8} & \cfrac{1}{8} & 0 & 0 \\ \\ 3 & \cfrac{1}{12} & \cfrac{1}{12} & \cfrac{1}{12} & 0 \\ \\ 4 & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} & \cfrac{1}{16} \end{array} XY 12341418112116120811211613001211614000161

F ( 3.5 , 2 ) = P ( X ≤ 3.5 , Y ≤ 2 ) F(3.5, 2) = P(X\leq 3.5, Y\leq 2) F(3.5,2)=P(X3.5,Y2)

= 1 4 + 0 + 1 8 + 1 8 + 1 12 + 1 12 = 2 3 =\cfrac{1}{4} + 0 + \cfrac{1}{8} + \cfrac{1}{8} + \cfrac{1}{12} + \cfrac{1}{12} = \cfrac{2}{3} =41+0+81+81+121+121=32

一般得:
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∑ x i ≤ x , y j ≤ y P ( X = x i , Y = y j ) F(x,y) = P(X\leq x, Y\leq y)=\sum_{x_i\leq x, y_j\leq y} P(X=x_i, Y=y_j) F(x,y)=P(Xx,Yy)=xix,yjyP(X=xi,Y=yj)

二元离散型随机变量概率分布

image.png

F ( x , y ) = { 0 , x < 1 或 y < 1 1 / 4 , 1 ≤ x < 2 , y ≥ 1 ⋯ 2 / 3 , 3 ≤ x < 4 , 2 ≤ y < 3 ⋯ 1 , x ≥ 4 , y ≥ 4 F(x,y)= \begin{cases} 0, & x<1 或 y<1 \\ 1/4, &1\leq x < 2, y\geq 1 \\ \quad & \quad \cdots \\ \color{lime}{2/3,} & \color{lime}{3 \leq x < 4, 2 \leq y < 3} \\ \quad & \quad \cdots \\ 1, & x\geq 4, y\geq 4 \end{cases} F(x,y)=0,1/4,2/3,1,x<1y<11x<2,y13x<4,2y<3x4,y4

分布函数 F ( x , y ) F(x, y) F(x,y) 的性质


  1. F ( x , y ) F(x,y) F(x,y) 关于 x , y x, y x,y 单调不减, 即:

     x 1 < x 2    ⟹    F ( x 1 , y ) ≤ F ( x 2 , y ) \quad \,\,\,\, x_1 < x_2 \implies F(x_1,y)\leq F(x_2,y) x1<x2F(x1,y)F(x2,y)

     y 1 < y 2    ⟹    F ( x , y 1 ) ≤ F ( x , y 2 ) \quad \,\,\,\, y_1 < y_2 \implies F(x,y_1)\leq F(x,y_2) y1<y2F(x,y1)F(x,y2)

分布函数1.jpg \quad \quad \quad \quad 分布函数2.jpg

  1. 0 ≤ F ( x , y ) ≤ 1 , F ( + ∞ , + ∞ ) = 1 0\leq F(x,y) \leq 1, F(+\infty, +\infty)=1 0F(x,y)1,F(+,+)=1

     \quad \,\,\,\, 对任意 x x x y y y 有:

     F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 \quad \,\,\,\, F(-\infty, y)=F(x,-\infty)=F(-\infty,-\infty)=0 F(,y)=F(x,)=F(,)=0

  1. F ( x , y ) F(x,y) F(x,y) 关于 x , y x,y x,y 右连续,即:

lim ⁡ ϵ → 0 + F ( x + ϵ , y ) = F ( x , y ) 以及 lim ⁡ ϵ → 0 + F ( x , y + ϵ ) = F ( x , y ) \lim_{\epsilon\to 0^{+}} F(x+\epsilon, y) = F(x,y) \quad \text{以及} \quad \lim_{\epsilon\to 0^{+}} F(x, y+\epsilon) = F(x,y) ϵ0+limF(x+ϵ,y)=F(x,y)以及ϵ0+limF(x,y+ϵ)=F(x,y)

  1. x 1 < x 2 , y 1 < y 2 x_1 < x_2, y_1<y_2 x1<x2,y1<y2,则有

     P ( x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 ) = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 \quad \,\,\,\, P(x_1<X\leq x_2, y_1<Y\leq y_2)=F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1)\geq 0 P(x1<Xx2,y1<Yy2)=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0

分布函数3.jpg

边际分布函数


二元随机变量 ( X , Y ) (X,Y) (X,Y)作为整体,有其联合分布函数 F ( x , y ) F(x,y) F(x,y) X X X Y Y Y 也有它们自己的分布函数,分别记为: F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y),并称他们为边际分布函数

F X ( x ) = F ( x , + ∞ ) = lim ⁡ y → ∞ F ( x , y ) F Y ( y ) = F ( + ∞ , y ) = lim ⁡ x → ∞ F ( x , y ) \begin{aligned} & F_X(x) = F(x,+\infty) = \lim_{y\to \infty}F(x,y) \\ & F_Y(y) = F(+\infty, y) = \lim_{x\to \infty}F(x,y) \end{aligned} FX(x)=F(x,+)=ylimF(x,y)FY(y)=F(+,y)=xlimF(x,y)

即在分布函数 F ( x , y ) F(x,y) F(x,y) 中,令 y → + ∞ y\to +\infty y+,就能得到 F X ( x ) F_X(x) FX(x) F Y ( y ) 同 理 F_Y(y)同理 FY(y)


例 2: ( X , Y ) (X,Y) (X,Y) 的分布函数

F ( x , y ) = { 1 − e − 0.5 x − e − 0.5 y + e − 0.5 ( x + y ) , x ≤ 0 , y ≤ 0 0 , 其他 F(x,y)= \begin{cases} 1-e^{-0.5x}-e^{-0.5y}+e^{-0.5(x+y)}, &x\leq 0, y\leq 0 \\ \quad \quad \quad \quad 0, & \text{其他} \end{cases} F(x,y)={1e0.5xe0.5y+e0.5(x+y),0,x0,y0其他

X X X 的边际分布函数 F X ( x ) F_X(x) FX(x)

解:
F X ( x ) = F ( x , + ∞ ) = lim ⁡ y → + ∞ F ( x , y ) = { lim ⁡ y → + ∞ ( 1 − e − 0.5 x − e − 0.5 y + e − 0.5 ( x + y ) ) , x ≥ 0 0 , x < 0 = { 1 − e − 0.5 x , x ≥ 0 0 , x < 0 \begin{aligned} F_X(x) &=F(x,+\infty)=\lim_{y\to +\infty}F(x,y) \\ &=\begin{cases} \lim_{y\to +\infty}(1-e^{-0.5x}-e^{-0.5y}+e^{-0.5(x+y)}), & x\geq 0 \\ \\ 0, & x<0 \end{cases} \\ &=\begin{cases} 1-e^{-0.5x}, & x\geq 0 \\ 0, & x<0 \end{cases} \end{aligned} FX(x)=F(x,+)=y+limF(x,y)=limy+(1e0.5xe0.5y+e0.5(x+y)),0,x0x<0={1e0.5x,0,x0x<0

条件分布函数


定义: P ( Y = y ) > 0 P(Y=y)>0 P(Y=y)>0,则在 Y = y Y=y Y=y 条件下, X X X 的条件分布函数为:

F X ∣ Y ( x ∣ y ) = P ( X ≤ x ∣ Y = y ) = P ( X ≤ x , Y = y ) P ( Y = y ) F_{X|Y}(x|y) = P(X\leq x|Y=y)=\cfrac{P(X\leq x, Y=y)}{P(Y=y)} FXY(xy)=P(XxY=y)=P(Y=y)P(Xx,Y=y)

Y Y Y 位离散型随机变量,就可满足 P ( Y = y ) > 0 P(Y=y)>0 P(Y=y)>0,但当 Y Y Y 为连续型随机变量时,显然 P ( Y = y ) = 0 P(Y=y)=0 P(Y=y)=0,所以这时不能这样定义条件分布函数。

P ( Y = y ) = 0 P(Y=y)=0 P(Y=y)=0,但对任一 ϵ > 0 , P ( y < Y ≤ y + ϵ ) > 0 \epsilon > 0, P(y<Y\leq y+\epsilon)>0 ϵ>0,P(y<Yy+ϵ)>0,则在 Y = y Y=y Y=y 条件下, X X X 的条件分布函数定义为:

F X ∣ Y ( x ∣ y ) = lim ⁡ ϵ → 0 + P ( X ≤ x ∣ y < Y ≤ y + ϵ ) = lim ⁡ ϵ → 0 + P ( X ≤ x , y < Y ≤ y + ϵ ) P ( y < Y ≤ y + ϵ ) \begin{aligned} F_{X|Y}(x|y) &= \lim_{\epsilon\to 0^{+}}P(X\leq x|y<Y\leq y+\epsilon) \\ &=\lim_{\epsilon\to 0^{+}}\cfrac{P(X\leq x,y<Y\leq y+\epsilon)}{P(y<Y\leq y+\epsilon)} \end{aligned} FXY(xy)=ϵ0+limP(Xxy<Yy+ϵ)=ϵ0+limP(y<Yy+ϵ)P(Xx,y<Yy+ϵ)

此时,仍记为 P ( X ≤ x ∣ Y = y ) P(X\leq x|Y=y) P(XxY=y)

即: F X ∣ Y ( x ∣ y ) = P ( X ≤ x ∣ Y = y ) F_{X|Y}(x|y) = P(X\leq x|Y=y) FXY(xy)=P(XxY=y)


例 3:

F X ( x ) = { 0 , x < 1 0.3 , 1 ≤ x < 2 1 , x ≥ 2 , F Y ( y ) = { 0 , y < 0 0.4 , 0 ≤ y < 1 1 , y ≥ 1 , F_X(x)= \begin{cases} 0, & x<1 \\ 0.3, &1\leq x<2 \\ 1, & x\geq 2 \end{cases},\quad F_Y(y)= \begin{cases} 0, &y<0 \\ 0.4, &0\leq y<1 \\ 1, &y\geq 1 \end{cases}, FX(x)=0,0.3,1,x<11x<2x2,FY(y)=0,0.4,1,y<00y<1y1,

P ( X = 1 , Y = 0 ) = 0.1 P(X=1,Y=0)=0.1 P(X=1,Y=0)=0.1,求

(1)联合分布律;

(2)当 Y = 0 Y=0 Y=0 时, X X X 的条件分布律 P ( X = k ∣ Y = 0 ) P(X=k|Y=0) P(X=kY=0)

(3) Y = 0 Y=0 Y=0 时, X X X 的条件分布函数。

解: (1) 由分布函数知,这两个变量是离散型的,分布律先写在联合分布律表中。注意: P ( X = x 0 ) = F ( x 0 ) − F ( x 0 − 0 ) P(X=x_0)=F(x_0)-F(x_0-0) P(X=x0)=F(x0)F(x00)

X Y 0 1 p i ⋅ 1 0.1 0.2 0.3 2 0.3 0.4 0.7 p ⋅ j 0.4 0.6 \begin{array}{c|cc|c} _X\bcancel{\quad^Y} & 0 & 1 & p_{i\cdot} \\ \hline 1 & 0.1 & \color{fuchsia}{0.2} & \color{red}{0.3} \\ 2 & \color{fuchsia}{0.3} & \color{fuchsia}{0.4} & \color{red}{0.7}\\ \hline p_{\cdot j} & \color{red}{0.4} & \color{red}{0.6} & \end{array} XY 12pj00.10.30.410.20.40.6pi0.30.7

(2) P ( X = k ∣ Y = 0 ) = P ( X = k , Y = 0 ) P ( Y = 0 ) = P ( X = k , Y = 0 ) 0.4 ,   k = 1 , 2 P(X=k|Y=0)=\cfrac{P(X=k,Y=0)}{P(Y=0)}=\cfrac{P(X=k,Y=0)}{0.4}, \, k=1,2 P(X=kY=0)=P(Y=0)P(X=k,Y=0)=0.4P(X=k,Y=0),k=1,2

X 1 2 P ( X = k ∣ Y = 0 ) 0.25 0.75 \begin{array}{c|cc} X & 1 & 2 \\ \hline P(X=k|Y=0) & 0.25 & 0.75 \end{array} XP(X=kY=0)10.2520.75

(3)
F X ∣ Y ( x ∣ 0 ) = P ( X ≤ x ∣ Y = 0 ) = { 0 , x < 1 0.25 , 1 ≤ x < 2 1 , x ≥ 2 \begin{aligned} F_{X|Y}(x|0)&=P(X\leq x|Y=0) \\ &=\begin{cases} 0, & x<1 \\ 0.25, & 1\leq x < 2 \\ 1, & x\geq 2 \end{cases} \end{aligned} FXY(x0)=P(XxY=0)=0,0.25,1,x<11x<2x2

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值