14. 正态分布

正态分布


正态分布的定义


X X X 的概率密度函数为 f ( x ) = 1 2 π σ   e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}\,e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}, -\infty<x<+\infty f(x)=2π σ1e2σ2(xμ)2,<x<+

其中 − ∞ < μ < ∞ , σ > 0 -\infty<\mu<\infty,\sigma>0 <μ<,σ>0,就称 X X X 服从参数为 μ , σ \mu,\sigma μ,σ 的正态分布(或高斯分布),

记为 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2).

dy.jpg

特征:

  1. f ( x ) f(x) f(x) 关于 x = μ x=\mu x=μ 对称;
  2. x ≤ μ x\leq \mu xμ f ( x ) f(x) f(x) 是严格单调递增函数
  3. f m a x = f ( μ ) = 1 2 π σ f_{max}=f(\mu)=\cfrac{1}{\sqrt{2\pi}\sigma} fmax=f(μ)=2π σ1
  4. lim ⁡ ∣ x − μ ∣ → ∞ f ( x ) = 0 \lim_{|x-\mu|\to\infty} f(x) = 0 xμlimf(x)=0

两个参数的含义:

  1. 当固定 σ \sigma σ,改变 μ \mu μ 的大小, f ( x ) f(x) f(x)图形的形状不变,只是沿着 x x x 轴作平移变换;
    μ \mu μ 称为位置参数(决定对称轴位置)。

  2. 当固定 μ \mu μ,改变 σ \sigma σ 的大小时, f ( x ) f(x) f(x) 图形的对称轴不变,而形状在改变, σ \sigma σ 越小,图形越高越瘦, σ \sigma σ 越大,图形越矮越胖。
    σ \sigma σ 称为尺度参数 (决定曲线分散程度)。

正态分布的概率计算


X ∼ N ( μ , σ 2 ) , X\sim N(\mu, \sigma^2), XN(μ,σ2)对于实数 x x x

P ( X ≤ x ) = F ( x ) = 1 2 π σ   ∫ − ∞ x   e − ( t − μ ) 2 2 σ 2   d t = ? P(X\leq x) = F(x) = \cfrac{1}{\sqrt{2\pi}\sigma}\, \int_{-\infty}^{x} \, e^{-\frac{(t-\mu)^2}{2\sigma^2}} \, {\rm d}t = ? P(Xx)=F(x)=2π σ1xe2σ2(tμ)2dt=?

这里的积分
∫ − ∞ x   e − ( t − μ ) 2 2 σ 2   d t \int_{-\infty}^{x} \, e^{-\frac{(t-\mu)^2}{2\sigma^2}} \, {\rm d}t xe2σ2(tμ)2dt

可以通过以下的方法进行计算:

方法一:用 EXCEL,MATLAB,R 等软件来计算;

方法二:用数值积分法;

方法三:转化为标准正态,然后利用标准正态分布表来求。

标准正态分布 \quad

Z ∼ N ( 0 , 1 ) Z\sim N(0,1) ZN(0,1),称 Z Z Z 服从标准正态分布.

bz.jpg

Z Z Z 的概率密度函数:

φ ( z ) = 1 2 π   e − z 2 2 \varphi(z)=\cfrac{1}{\sqrt{2\pi}} \, e^{-\frac{z^2}{2}} φ(z)=2π 1e2z2

Z Z Z 的分布函数:

Φ ( z ) = ∫ − ∞ z 1 2 π   e − t 2 2   d t \Phi(z)=\int_{-\infty}^{z} \cfrac{1}{\sqrt{2\pi}} \,e^{-\frac{t^2}{2}} \, {\rm d}t Φ(z)=z2π 1e2t2dt

标准正态分布函数表( Φ ( z ) \Phi(z) Φ(z) 值),可参考如下网站:

https://en.wikipedia.org/wiki/Standard_normal_table

bz-dc.jpg

-bz.jpg

这里可以注意到 Φ ( z ) = 1 2 π   e − z 2 2 \varPhi(z)=\cfrac{1}{\sqrt{2\pi}}\, e^{-\frac{z^2}{2}} Φ(z)=2π 1e2z2 关于 y 对称性,

则标准正态分布的分布函数有一个重要性质:

Φ ( − z 0 ) = 1 − Φ ( z 0 ) , \Phi(-z_0)=1-\Phi(z_0), Φ(z0)=1Φ(z0)

对于任意的实数 z 0 z_0 z0 都成立。

性质: 当 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2) 时, X − μ σ ∼ N ( 0 , 1 ) . \cfrac{X-\mu}{\sigma}\sim N(0,1). σXμN(0,1).

证明: 对于任意实数 z z z

P ( X − μ σ ≤ z ) = P ( X ≤ σ z + μ ) = ∫ − ∞ σ z + μ   1 2 π σ   e − ( t − μ ) 2 2 σ 2   d t P(\cfrac{X-\mu}{\sigma}\leq z) = P(X\leq \sigma z+\mu) = \int_{-\infty}^{\sigma z+\mu}\, \cfrac{1}{\sqrt{2\pi}\sigma}\, e^{-\frac{(t-\mu)^2}{2\sigma^{2}}} \, {\rm d}t P(σXμz)=P(Xσz+μ)=σz+μ2π σ1e2σ2(tμ)2dt

s = t − μ σ s = \cfrac{t-\mu}{\sigma} s=σtμ,则 ( t − μ ) 2 2 σ 2 = s 2 2 , d s = 1 σ   d t \cfrac{(t-\mu)^2}{2\sigma^{2}}=\cfrac{s^2}{2},{\rm d}s=\cfrac{1}{\sigma}\,{\rm d}t 2σ2(tμ)2=2s2ds=σ1dt

所以上面的式子

∫ − ∞ σ z + μ   1 2 π σ   e − ( t − μ ) 2 2 σ 2   d t = ∫ − ∞ z 1 2 π   e − s 2 2   d s = Φ ( z ) \int_{-\infty}^{\sigma z+\mu}\, \cfrac{1}{\sqrt{2\pi}\sigma}\, e^{-\frac{(t-\mu)^2}{2\sigma^{2}}} \, {\rm d}t = \int_{-\infty}^{z} \cfrac{1}{\sqrt{2\pi}} \, e^{-\frac{s^2}{2}} \,{\rm d}s = \Phi(z) σz+μ2π σ1e2σ2(tμ)2dt=z2π 1e2s2ds=Φ(z)

由此可见,当 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2) 时,对于任意实数 a a a,有

F X ( a ) = P ( X ≤ a ) = P ( X − μ σ ≤ a − μ σ ) = Φ ( a − μ σ ) F_X(a) = P(X\leq a) = P(\cfrac{X-\mu}{\sigma} \leq \cfrac{a-\mu}{\sigma}) = \Phi(\cfrac{a-\mu}{\sigma}) FX(a)=P(Xa)=P(σXμσaμ)=Φ(σaμ)


例 1: 一批钢材(线材)长度(cm) X σ N ( μ , σ 2 ) , μ = 100 , σ = 2 , X\sigma N(\mu, \sigma^2), \mu=100, \sigma=2, XσN(μ,σ2),μ=100,σ=2,
求:
(1)这批钢材长度小于 97.8 的概率;
(2)这批钢材长度落在区间(97.8,103)的概率。

解:

(1)
P ( X < 97.8 ) = P ( X − μ σ < 97.8 − μ σ ) = Φ ( 97.8 − μ σ ) P(X<97.8) = P(\cfrac{X-\mu}{\sigma}<\cfrac{97.8-\mu}{\sigma})=\Phi(\cfrac{97.8-\mu}{\sigma}) P(X<97.8)=P(σXμ<σ97.8μ)=Φ(σ97.8μ)

= Φ ( 97.8 − 100 2 ) = Φ ( − 1.1 ) = 1 − Φ ( 1.1 ) =\Phi(\cfrac{97.8-100}{2})=\Phi(-1.1)=1-\Phi(1.1) =Φ(297.8100)=Φ(1.1)=1Φ(1.1)

通过查表,可以得到 Φ ( 1.1 ) = 0.86433 \Phi(1.1)=0.86433 Φ(1.1)=0.86433

∵ 1 − Φ ( 1.1 ) = 1 − 0.86433 = 0.13576 \because 1-\Phi(1.1)=1-0.86433=0.13576 1Φ(1.1)=10.86433=0.13576

(2)
( P ( 97.8 < X < 103 ) = P ( 97.8 − μ σ < X − μ σ < 103 − μ σ ) (P(97.8<X<103)=P(\cfrac{97.8-\mu}{\sigma}<\cfrac{X-\mu}{\sigma}<\cfrac{103-\mu}{\sigma}) (P(97.8<X<103)=P(σ97.8μ<σXμ<σ103μ)

= Φ ( 103 − 100 2 ) − Φ ( 97.8 − 100 2 ) = Φ ( 1.5 ) − Φ ( − 1.1 ) =\Phi(\cfrac{103-100}{2})-\Phi(\cfrac{97.8-100}{2})=\Phi(1.5)-\Phi(-1.1) =Φ(2103100)Φ(297.8100)=Φ(1.5)Φ(1.1)

查表,得到 Φ ( 1.5 ) = 0.93319 \Phi(1.5)=0.93319 Φ(1.5)=0.93319,由(1)可知 Φ ( − 1.1 ) = 0.13576 \Phi(-1.1)=0.13576 Φ(1.1)=0.13576

∵ Φ ( 1.5 ) − Φ ( − 1.1 ) = 0.93319 − 0.13576 = 0.79743. \because \Phi(1.5)-\Phi(-1.1)=0.93319-0.13576=0.79743. Φ(1.5)Φ(1.1)=0.933190.13576=0.79743.


例 2: 用天平称一实际质量为 μ \mu μ 的物体,天平的读书记为随机变量 X X X,若 X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^{2}) XN(μ,σ2),求读书与 μ \mu μ 的偏差在 3 σ 3\sigma 3σ 范围之内的概率。

解: 由题意知,题实际要求的是:

P ( ∣ X − μ ∣ < 3 σ ) P(|X-\mu|<3\sigma) P(Xμ<3σ)=P( − 3 σ < X − μ < 3 σ ) = P ( − 3 σ σ < X − μ σ < 3 σ σ ) -3\sigma<X-\mu<3\sigma)=P(-\cfrac{3\sigma}{\sigma}<\cfrac{X-\mu}{\sigma}<\cfrac{3\sigma}{\sigma}) 3σ<Xμ<3σ)=P(σ3σ<σXμ<σ3σ)

= P ( − 3 < X − μ σ < 3 ) = Φ ( 3 ) − Φ ( − 3 ) = Φ ( 3 ) − { 1 − Φ ( 3 ) } =P(-3<\cfrac{X-\mu}{\sigma}<3)=\Phi(3)-\Phi(-3)=\Phi(3)-\{1-\Phi(3)\} =P(3<σXμ<3)=Φ(3)Φ(3)=Φ(3){1Φ(3)}

= 2 Φ ( 3 ) − 1 = 查表 2 × 0.99865 − 1 = 0.9973 =2\Phi(3)-1 \overset{\text{查表}}{=}2\times 0.99865 - 1 = 0.9973 =2Φ(3)1=查表2×0.998651=0.9973

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值