LeetCode 204. 计数质数 | Python

204. 计数质数


题目来源:LeetCode(力扣)https://leetcode-cn.com/problems/count-primes/

题目


统计所有小于非负整数 n 的质数的数量。

示例 1:

输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入:n = 0
输出:0

示例 3:

输入:n = 1
输出:0

提示:

  • 0 <= n <= 5 * 10^6

解题思路


思路:埃氏筛

首先先审题,题目要求统计所有小于非负整数 n n n 的质数数量,其中 0 < = n < = 5 ∗ 1 0 6 0 <= n <= 5 * 10^{6} 0<=n<=5106

质数:又指素数,指在大于 1 的自然数中,只能被 1 和自身整除的自然数。

根据质数的概念,我们首先能够想到的就是直接枚举。

对于每个数 i i i,我们可以枚举 [ 2 , i − 1 ] [2, i-1] [2,i1] 区间的任意一个数 j j j,判断 i i i 能否被 j j j 整除。这里需要注意的是,这里时间复杂度最差的情况下为 O ( n ) O(n) O(n)。但 n n n 在这里也是一个比较大的数字,单单对一个数字进行判断时,时间复杂度到 O ( n ) O(n) O(n) 并不理想。

枚举 [ 2 , i − 1 ] [2, i-1] [2,i1] 区间的任意一个数 j j j,判断 i i i 能否被 j j j 整除时,我们可以发现,如果 i i i 能够被 j j j 整除,那么这里的也一定能够整除 i i i,即是 i i i 也能够被 i j \frac{i}{j} ji 整除。那么我们只要判断 i i i i j \frac{i}{j} ji 其中一个能否整除 i i i 即可。此时我们只要选择判断两者中的较小值,而且我们可以发现较小值一定是落在区间 [ 2 , i ] [2, \sqrt{i}] [2,i ]。那么判断每个数 i i i ,枚举时只需要枚举 [ 2 , i ] [2, \sqrt{i}] [2,i ] 中的数即可。那么此时判断的时间复杂度则可以优化至 O ( n ) O(\sqrt{n}) O(n )

这里提一下,为什么 i i i i j \frac{i}{j} ji 的较小值会落在区间 [ 2 , i ] [2, \sqrt{i}] [2,i ]

假设 i i i (大于 1 的自然数)不是质数,那么一定存在两个数(均大于或等于 2)的乘积为 i i i

设这两个数分别为 a a a b b b(其中 a < b a < b a<b a , b a, b a,b 均大于或等于 2),现在 i i i 的大小是固定,即是 a a a b b b 的乘积是固定的,此时 a a a b b b 都是 i i i 的因子。当 a a a 增大时,那么 b b b 会相应的减小, a a a b b b 两者会相互趋近。若存在 a × b = i a \times b = i a×b=i a = b a = b a=b 的情况,那么此时 a = b = i a=b=\sqrt{i} a=b=i

此时若继续增大 a a a,会使得 a > b a > b a>b,而此时较小值 b 也会在 i \sqrt{i} i 的左边。

在这里,我们可以发现, a 、 b a、b ab 之间,其中的较小值一定是落在区间 [ 2 , i ] [2, \sqrt{i}] [2,i ]。只需要枚举 [ 2 , i ] [2, \sqrt{i}] [2,i ] 区间的数进行判断即可。

具体的代码实现如下。

# 超时(直接枚举)
class Solution:
    def countPrimes(self, n: int) -> int:
        def is_prime(num):
            j = 2
            while j * j <= num:
                if num % j == 0:
                    return False
                j += 1
            return True
        

        count = 0
        for i in range(2, n):
            if is_prime(i):
                count += 1
        
        return count

这里代码执行超时。

埃氏筛

这里说下埃氏筛,这里先放一张关于埃氏筛思路的图片(来源:维基百科)

埃拉托斯特尼筛法

埃氏筛的原理:从 2 开始,将每个质数的倍数都标记为合数。同样的,标记到 n \sqrt{n} n 停止。

假设一个数 i i i 为质数时,那么此时大于 i i i 且是 i i i 的倍数的数一定不是质数,例如 2 i 2i 2i 3 i 3i 3i…。那么我们将这些不是质数的数进行标记。

这里需要注意,标记应该从 i ∗ i i * i ii 开始,而不是 2 ∗ i 2 * i 2i 开始。因为对于每个数 i i i 来说,枚举是从小到大的,此时前面数字的倍数都已经进行了标记。对于 i i i 而言, 2 ∗ i 2 * i 2i 也肯定会被在枚举数字 2 时进行标记, [ 2 , i ) [2, i) [2,i) 区间的数同理。

具体的代码实现如下。

class Solution:
    def countPrimes(self, n: int) -> int:
        # 定义数组标记是否是质数
        is_prime = [1] * n
        
        count = 0
        for i in range(2, n):
            # 将质数的倍数标记为合数
            if is_prime[i]:
                count += 1
                # 从 i*i 开始标记
                for j in range(i*i, n, i):
                    is_prime[j] = 0

        return count

欢迎关注


公众号 【书所集录


如有错误,烦请指出,欢迎指点交流。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值