300.最长递增子序列
题目描述:
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例1
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例2
输入:nums = [0,1,0,3,2,3]
输出:4
思路与解法(1)——动态规划
这算是利用动态规划思想的一道典型题吧,动态规划的核心就是用空间换时间。
本题基本求解思路是,new 一个与nums数组等长的数组,记为res。对于nums数组中的每个数nums[i],res数组记录以该数作为结尾的最长递增序列的长度。
然后依据以下求解过程:
- 满足j <= i,nums[j] < nums[i]时,res[i] 取res[j] + 1和res[i]中较大的那个(j为不大于i的所有整数)。
- 退出j的遍历时,比较max和res[i],当res[i]更大时,更新max的值为res[i]。
最后返回时,因为在边界情况,如某数nums[i]是以自己同为首尾的序列,res[i]记录为0,但实际为1,所以应整体+1,最后返回应为max+1。
Java实现如下
class Solution {
public int lengthOfLIS(int[] nums) {
// 记录以该数为结尾的最长递增序列长度
int[] res = new int[nums.length];
int max = 0;
for(int i = 0; i < nums.length; i++){
for(int j = 0; j <= i; j++){
if(nums[i] > nums[j]){
res[i] = Math.max(res[i], res[j] + 1);
}
}
max = Math.max(max, res[i]);
}
return max + 1;
}
}
复杂度分析
时间复杂度:两个for循环嵌套,故为O(n^2)。
空间复杂度:额外使用长度为n的res数组的开销,故为O(n)。